

AM-FM STATIONS WORLD-WIDE SHORT-WAVE LISTINGS! JUNE-JULY 75c

PROJECTS THAT LET YOU-

- Multiply with Neon Bulbs
- Control Photofloods 100\%
- Dial Any Resistance

TEST REPORTS

Hallicrafters CB-15
AMIPart-I5 Walkle-Talkie
Lafayette Model HA-520 Dual-Band VHF Receiver

Jensen Model CC-1 Headset Control Center

Be creative-and thrifty too!

Save up to 50% with EICO Kits and Wired.

EICO supports your sense of achievement with no-compromise engineering, finest parts, pramatic esthetics, simple step-by-step instructions and large pictorial diagrams. You need no technical background-just pliers, screw. driver, soldering iron. Three million
people, ages 8 to 89, have built EICO kits. If you love to create, EICO is for you. And if you want the best buys in ready-to-use factory. assembled equipment, again EICO is for you. Judge critically for yourself. Send for your free catalog. See EICO at your local deater.

TEST EQUIPMENT

Mndel 232 Peak-10. Peak VTVM. A must for color or $88 w$ all 4 functions. With Umi. Probe. $\$ 29.35$ hit, क 34.35 wired.

Model 460 Wideband Direct-Coupled 5 " Oscll. loscope. DC-4.5mc for colop and B8W TV service and al innut. Aumple sal. of $\$ 89.95$ hit, $\$ 129.50$ wired.

Model 324 RF Signal Generator, 150 kc 10 A 35 mc range. For IF.RF alignment and BEnai trącing of modulation $\$ 3205$ kit sans wirct

CITIZENS BAND/ HAM RADIO

New Model 779 Sentinel 23 CB Transceiver. 23. channel frequency syntthesizer provides crystal. controlled transmit and recelve on all 23 chaninclude dual conversion. illuminated $S /$ RF meter, adjustable squelch and noise limiter, IVI filter, adjustable squelch and noise limiter, IVI filter,
117 VAC and 12 VDC transistorized dual power supply. A1so serves as 3.5 watt P.A. system. $\$ 169.95$ wired.

New Model 712 Sentinel 12 Dual Conversion 5 . walt CB Transcelver. Permils 12 -channel crystal. controlled transmit and receive, plus 23 -channel tunable receive. Incorporates adjustable squelch \& noise Ilmifer, 8 switches for 3.5 watt P.A. sVDC wired only.

New Model 753 The one and only SSB/AM CW Tri.Band Transcelver Klt. "The best ham transreiver buy for 1966"-Padlo TV Experlmenter MaFarime 200 watts PEP on 80 , 40 and 20 melers. Receiver offset tuning. buliti-in vox. high level dynamic ALC. Unequaled performance, feav ures and appearance. Sensationally priced at $\$ 189.95$ kit, $\$ 299.95$ wired.

STEREO/HI-FI

New Model 3566 All Solld-State Automatle FM MPX Stereo Tuner/Amplifler. 'Very satisfactory product, very attractive price" - Audio Magazine. No tubes, not even nuvistors. Delivers 112 watts IHF total to 4 ohms, 75 watis io 8 ohms. Completely pre-vilred and pre-aliened RF, IF and $\mathbf{\$ 2 1 9 . 9 5}$ mit (optional wainut cabinet $\$ 14.95$). $\$ 325.00$ wired including walnut cabinet. Uí approved.

Model \$170 70.Watt Infegrated Stereo Ampltiter. Best buy of highest ranked stereo amplitiers according to Independent lesting. $\$ 99.95$ mit, $\$ 149.95$ wired. ST.40 40 -Waft Integrated St areo Amplifer. $\$ 79.95$ it, \$129.95 wired. Si97 wired.

FREE 1966 CATALOG

EICO Electronic Instrument Co., Ine.
$131.0139 t h$ Ave., Flushing, N. Y, 11352 RTVE. 6
Send me FrEE Catalog describing the full EICO line of 200 best buys, and name of nearest dealer. I'm interested in:
\square test equipment \square ham radlo
\square stereo /hl-fi
Cllizens Band radio

Name
Address
City
State
2ip

Cut yourself in on 16 extras:

1 More electronics courses (22) than any other school. This lets you choose one that's just right for you.
2 Or, to meet special needs, I.C.S. will tailor-make a course for you, personally.
3 You may pay for your course month by month. as your study progresses.
4 Famous Heathkitll equipment (only I.C.S. has it).
5 Complete library of texts included in price of course.
5 Your money back if you fall to pass test for 1 st or 2nd Class Radiotelephone license after studying the appropriate I.C.S. course.
7 Experienced home-study counselors always available to help you.
8 Broad career guidance facillites.

9 I.C.S. mails progress reports to your employer, if you request.
1 - Programed courses (optional) for quick, easy study.

1. I.C.S. constantly reviews all texts to assure up-to-dateness.
12 Complete courses in Telephony availableonly from I.C.S.
13 Greater experience in correspondence education than any other school (75 years-over $71 / 2$ million students).
14 One out of every 14 top executives in America has at one time studied with I.C.S.
15 All courses accredited by National Home Study Council.
16 New 64.page "ElectronICS" fact book, just off the press, is yours FREE. It answers the most-often-asked questions about breaking into electronics.

Any number of schools can teach you electronics. All of them offer some of these extras.
But only I.C.S. has them all. Why should you settle for less?
Cut yourself in on electronics success.
Mail the coupon that brings you all 16 electronics extras. Do it right now.

EXPERIMENTER

June-July 1966 CONTENTS/INDEX $\dot{\sim}$ Cover Highlights							
zAudio Compressor............... 33	-	-	-	-			
Ohms Range Expander............. 37	-	-					-
\% Dial--a Ohm..................... 40		- -					-
2\%Atomic Destruction from Space 42	-						-
Will Rogers and Audio Tape........ 46 -	-			-			-
\% Neon-Lamp Calculator 49	-	- -					-
\% Lab Check-Lafayette HA-52053	-		-				-
4SCR Photoflood Controller........ 55		- -					-
Join a Radio Club................. 62	-		-		-	-	
Electronic Dial-Lock.............. 63		- -					-
4_{4} Lab Check-Jensen CC-1........ 69	- -	-		-			
zutab Check-Hallicrafters CB-15... 71	- -	-	-				
Perr-Board Project-Screamer....... 73		- •		-			-
Propagation Forecast.............. 75	- -	-	-				
New Angle for Your Work Bench....76	-	-					-
${ }_{2}$ Hear the World on Your CB Rig... 78	- -	-	-	-			
Calling All Vampires.............. 81	-		-	-		-	
Electronic Light Watchman 83		- -	-				-
Language DX 87	-		-	-			-
Polarity Tattletale................. 89		-	-				

Additional Short Subjects on pages $58,68,72,74,80886$.
WHITE'S RADIO LOG, Vol. 45, No. 3-Page 96
DEPARTMENTS • Positive Feedback 6 - CB Column 10 - Bookmark 14 New Products 18 - Ask Me Another 23 - Literature Library 30

NOW THERE ARE 85 RADIO SHACKS COAST TO COAST!

STAM FORD 29 HIoh R1d oo Rd.
WEST MARTFORD - 39 So. Maln 5 t.
ILLINOIS
CHICAGO-Ever Draten Pleza it 95th st.
PORTLAND - PInA Tre Shop, Ctr
LANGLEY PARK M - HAmpihire-Langley Ctr
MASSACHUSETTS
BOSTON:
167 Wahlnoton St.
994 Washinolon
110 Faderal St
BAAINTAEE - South Shora Piare
BROCKTON-Westasto mall
EAOOKLINE - 730 Commonuallh Ave.
CAMBRIDGE - FREMOPDAS' Werid
LOWELL - Central Shop. Flar
BPUGUS-N. E., Shap. Ctr
SPRINGFIELD-
WEST SPRINGFIELD - Contury Shon. Ctr.
WORCESYEA - LIneoln Plaze
MINNEAPOLIS - 1121 Mleollet Ave.
ST. PAUL-473 North Snalling
T. LOUIS MISSOURI

Ti Lo Plis: St . (walter Ashe Olv.) Nouth County shoppland Cant NEW HAMPSHIRE
MANCHESYER - 1247 EIm SP. NEW MEXICO ALQUQUERQUE - 6315 Lomas. N.E.
BINGHAMTON (Vastal) Trantal Shop, plas
NEW YORK - 1128 Avi. of tha Amerlecis. Cu SCHENECTADY (Rotterdam) - Shopora SCHENECTAD SYRACUSE Alvd, Eant.
3057 Eris
Falmount Fair Shop. Cir. CINCINNATI - OHIO Silfton Cte. OKLAHOMA OKLANOMA CITY - Mayfalr Shop. Ctr. TNLSA - 2 SI GVM Marve OREGON 42nd 31 PORTLANO - IGRE NEN
PHILADELPHIA
., Roosevalt Mall PIITSBUAMGN St. 309 So. Hills Village. RHODE ISLAND CRANSTON - 1301 Raservolr Ave. EAST PROVIDENCE - Shopgeri To TEXAS
ABILEME - 2910 North FIrst St. ARLTIN - Manenet Shopping Canler GROWNSVILLE - 847 S. E. Elisabeth St. Dateds: Canter
125 Wynnawood village plymouth park Shop. Cer
FORT WORTH
1515 So. Unlverilty Dr
300 East Borry St
2615 wast 7th St.
HoUston:
8458 Guli Freeway
322 Northline Mal
Bollalra - 4759 Bissonnat
SAN ANTONIO.
150 Wonderland Shap. Ctr.
SGe4S. W. Millary Drive 15 Worth
Waco - 10 It Austin Ave.
SALT LAKE CITY UTAH COttonwood Mall. ARLINGTON - WIAGINIA WASHINGTON
seattie: 2028 Third Ave 837 N. E. Ilotm 91 Burlen Pleza

FREI:
 RADIO SHACK sther ELECTRONIC PROJECT BOOK
 SURPRISE PAKS
 At a fraction of their cost WHILE THEY LAST! All types, all kinds - semiconductors (tested \& untested), buy now!

 27-034
 2.98
 With Purchases of $\$ 4.95$ or More

 SOLID-STATE MODULES
 S2 BOOK!
 (A) Wireless Phono Oscillator Madule: designed to play your phonograph.

\section*{100-pc Semiconductor

100-pc Semiconductor Grab Pak

PNP's, NPN's. asst: case styles TO. 36 \& TO-3

60-pc Jumbo Rectifier Surprise Pak

\qquad

98 Less than 48 ea. Includes top hats, epoxies, zeners, diodes, etc. A great buy! 27-033 . . 1.98

10-pc Power Transistor Pak Asst:|4 10,20 watt, 50 watt sizes; germanium, silicon types. Asst. TO-3, -5, -8, -13 and TO-36 cases. 27-036

Net 1.98
-ARCHER- TWIN-PAKS $11^{\text {P }}$ Popular PNP Types

5 Each of
98 98- 2N107 Types - CK722 Types

Exclusive! Ideal for all audio applications. Base diagrams incl. 27.031 1.98

10 NPN \& 15 PNP
198
For RF applica. tions switching. general purpose audio types. Replace many numbers without circuit change. 27-1516
1.98 directly through a radio without connecting wires. $27-257 \ldots 4.95$
(B) Intercom Amplifier Module: custom-build a modern, convenient intercom system for your home or office. 27-254 4.95
(C) "Baby-Sitter" Amplifier Module: gives real peace of mind; even lets you monitor sound of baby's breathing. 27-256 4.95
(D) Phonograph Amplifier Module: designed for use with crystal or ceramic cartridge. 2 watts peak power. 27-261 4.95
(E) Telephone Amplifier Module: permits "group-listening" to a phone conversation; talk with hands free. 27-260 4.95
(F) Super High-Gain Amplifier Module: for use as a hearing aid, audio signal tracer, "eavesdropper", etc. 27-251 4.95
(G) Power Amplifier module: the ideal amplifier to use with tuners, microphones, paging systems, or as signal tracer, 27-253 4.95
(H) Guitar Amplifier Module: can be used with guitars or any stringed instrument. 2 watts peak power. 27-255 4.95 AC Power Supply Module: converts 115 VAC to 6 VAC, 1 amp. Use with rectifier-electronic filter (below), 27-258 1.95 Rectifier-Electronic Filter Module: provides dual DC output from $A C$ power supply. 6 VDC; 24 V max., 1 amp. 27-259 3.95

Optional Accessories for Modules Above			
Cat. No.	Description	Key Letters	
27.1430	Loopstick Antenna	$\frac{\mathrm{Key} \text { Letters }}{\text { A }}$	Each
23.465 27.1437	"C"Cells (4ena ${ }^{\text {chequired) }}$	A	. 14
23-006	Batsery Holder (2 required)	A	. 25
27-258	AC Power Supply	B, C, D, E, G, H	1.05
27-259	Rectifier-Electronic Filter	B, C, D, E, G, H	1.95
40-1203	4" Speakers (2 required)	B, C, D, E, G, H	3.95
27-1384	4PDT Switch		1.99
27.066	500? Control w/Switch	8	49
40-219	$8{ }^{\prime \prime}$ Extension Speaker	${ }^{8}$	79
27-1264	100-F\%. Speaker Wire	C	8.95
33.100		c	2.39
27-212	500k Control w/Switch	- C, ${ }^{\text {F }}$	1.89
40-1213	$8^{\prime \prime}$ Speaker	D, E, F H	. 79
44.533	Telephone Pickup	D, E, G,	3.99
33-180	Headphone		.998
23-468			1.98
27.1433	Battery Holder ${ }^{\text {a }}$	F	10
33-918	Dynomic Microphone	G	. 22
33-115			
	Contact Type Mlerophone	H	1.49

the TITEniny Mode 501 COMPONENT SUBSTITUTOR .the instrument acclaimed by scervicemen, engineers and school shops now available in a wise-it-yourself KIT!

step-by-step illustrated instructions make the Model 501 easy-to-build

Substitutes for any one of over 80 component values

Will substitute

 up to 4 different components at the same timeA surge protector switch prevents arcing, sparking, or heal. ing of electrolytics

places a complete range of components at your fingertips for fast substitution

No longer do you have to handle crumpled parts...solder and unsolder components as you troubleshoot a set. With a twist of a knob you can set the 501 to any electronic components you want and need... Substitutes for Carbon Resistors Power Resistors - Capacitors Electrolytics - Crystal Diodes Selenium Power
and Silicon
Power Rectifiers.
Model 501 K Kit $\$ \mathrm{Net}^{95}$ Model 501 Wired $\$ 39.95$ Net

Dedicated to America's Eledronics Experimenters

JULIAN M. SIENKIEWICZ Edifor
WA2CQL/KMD4313

WILLIAM HARTFORD KKD7432	Technical Eutior
ELMER C. CARLSON	Construction Editor
ANTHONY MACCARRONE	Art Director
IRVING BERNSTEIN	Couer Art Director
EUGENE F. LANDINO	Associate Art Dircetor
RON STAFFIERI	Apt Editor
JUDITH ANDERSON	Art Ansociato
ELLIOT S. KRANE	Adrertieíng Dircelor
JIM CAPPELLO	Advertising Manager
LEONARD F. PINTO	Production Dircelor
CARL BARTEE	Production Manager
HELEN GOODSTEIN	Asaintant Production Manager
CLIFF SHEARER	Promotion Director
JOSEPH DAFFRON	Erecubice Editor

[^0]RADIO.TV EXPERIMENTER, Vol. 20, No. 3 if891, is published bi-month. Iy by SCIENCE \& MECHANICS PUBLISHING CO., a subsidiary of Davis Publications, Inc. Editiorial, business and subseription offices: 505 Park Ave., New York, N. Y. 10022. One-year subscription six issues)$\$ 4.00$; two-yeor subscriptlon 112 issuest- $\$ 7.00$; ond three-year subseription 118 lssues) $-\$ 10.00$. Add $\$ 1.00$ per year for postage outside the U.S.A. and Canoda. Advertising offices: New York, 505 Park Ave., Pl-2.6200; Chicago: 520 N . Michigan Ave., 527.0330 ; Los Angeles: 1709 W. Bth St. 213-483-5317, Allanta: Pirnie \& Brown, 3108 Piedmont Rd., N.E., 404.233-6729; long Island: Len Osten, 9 Garden Street, Grear Neck, N.Y., 516-487.3305; Southwestern adverlising representative Jim Wright, 4 N . Elght St., St, Lovis. CH 1.1985.

EDITORIAL CONTRIBUTIONS must be accompanied by return postage ena will be handied with reosonable care; however, publisher ossumes no responsibitity for relum or solely of monuscripls, of work, or photographs. All contributions should be addressed to the Edltar Rodic. IV Experimenter, 503 Pork Avenue, New York, Now York 10022

Second class postoge pold at New York, New York and of addilional mailing olfice. Copyright 1966 by Science and Mechonics Publishing Co.

KEEP PACE WITH SPACE AGE! SEE MANNED MOON SHOTS, SPACE FLIGHTS, CLOSEUP!
 Ma nc SMITE Bus
 FREE! FREE!
 SIND FOR GIANT 148 page catalog" hp" see below!

NEW WORKING MODEL DIGITAL COMPUTER
ACTUAL MINIATURE VERSION
 Famelnating new yee-through model computer fundianentulv. Adits. subtracts. multiplies, shifts, complements, carries. memorizes. counts,
compares, sequences. Attractively colored. rim id plastic es fine easily Alitactivel very cu
assembly
 22-page instruction book covering operator, computer lat Stock No. 70.683 -HP

Handymen, Hobbyists, Homeowners INGENIOUS NEW VACUUM BASE Makes Tools and Appliances Portable Now move all kinda of normally bolled-down de-
v less from place to place. Mach med top surface vies from place to place. Machined top sumace
of Vacuum Base drilled to securely hold vies,
miter boxes. drills. milter boxes. drills. reflectors, gases, measuring Base also handily adapted for mounting camera, binocular or telescope to car window. Hottorn vacuum) of heavy neoprene taches securely (by metal, porcelalin, formicas glass, pete. Unis perse down to lInoleum, parallel to base, 200 - 1 t . Force perpendicular to base. Rugivedily consstrucked of east aluminum. Gray baked enamel! finish. Top surface Stock No. 60.567-HP

See the Stars, Moon, Planets Close Up! 3" ASTRONOMICAL REFLECTING TELESCOPE 60 to 180 Power-Famous Me. Palomar Typal An Unusual Buy:

Assenbled-Heady to Use! You'll see the Rings of saturn, the fast mating planet. Mars, huge craters on the Moon. Phases of Venus. star Clusters. Noons of Jupiter in detail. Galaxies Fiquatoria mount wi th lock on boil axes. Alurainized and orercoated $3^{\prime \prime}$ diameter high s Deed fill inirror. Telescope comes. equipped with a box eyepiece and a inourted Barlow Lens, Giving You 80 to 180 power, low-cost accessory eyepiece itrallable for higher powers, An Opileal Finder Telescope. always's so essential. is also included. Sturdy, hardwood. portable tripod. FREE with Scope FNaluable stat CHAFT plus 27: page "HABhBOHK OF HEAV FNS" Plus "hIHW TO LSE YOUR TELRECOPE'* BOOK.
$41 / 4$ Reflecting Tefescope-up to 270 Power

SUPERB $6^{\prime \prime}$ REFLECTOR TELESCOPE
Up to $576 \mathrm{H}^{2}$ lower. Equatorial mount and Pedestal Base,
Stock No. 85,086-HP...................... \$199.50 F.0.B
WAR SURPLUS AMERICAN-MADE 7×50 BINOCULARS
COLLIMATOR AND INFINITE LIGHT SOURCE

Expensive surplus gun wight orig. cost Govt. about finite. Was essentlalig a collimator or source of in search labs. Contains ring and dot reticle, reechromatle lens. silvered reflector bulb, $3 \% " x 2 \mathrm{~s}^{2}$ " reflector glass plate, Bull operates on $14 v$, can a bible. be converted to 110 V or inezuensive transformers unit meas. 6 \& "convenient holes for easy mounting. sturdily built Stock No. 70,774 -HP
160 V Transformer for Light Source
$\$ 9.95$ Postpaid

Stock No. 60.521 -HP
'FISH' WITH A WAR SURPLUS MAGNET
Go Treasure Hunting on the Bottom
Great idea! Fascinating fun and sometimes ire-
drop it overboard in bey, river, lithe our ocean. Magnetalong the hothom-your "treasure , haul can he outhoarrit
motors, anchors, fishing tackle, all kinds of metal it gables. 5 -lien Arsine is war surplus-AInteo of metal vatuCost, \$30. Lilts over 1.50 list on neo V Type-Gov't Stock No. 70,571 . HP 5 Ib . Magnet
Stock No, 70,570. HP $31 / 2 \mathrm{ib}$. Lifts 40 lbs.
Stock No. 85,152 - HP is $1 / 4 \mathrm{ib}$. size. lifts 350 lbs $\$ 12.50$ Postpaid

BINOCULAR-TO-CAMERA HOLDER

 Will Fit Any Camera For Exciting Telephoto Pictures Brink distant objects 7 times nearer wiz NEW CAMEHA-TO.BEOCUCUAR HON.UER. scent for long range photos of wild life. Ships. people, planer, "IC. Cameras and ult or monerulur-any enmerny silt or
movie. Take color or hack and th te shuts, Attractive gray crinkle and bright chrome finish 10° Honk Stock No. 70,223-HP
$\$ 11.50$ Postpaid

"Balls of Fun" for Kids Traffic Stoppers for Stores Terrific for Amateur Meteorologists
 SURPLUS GIANT WEATHER BALLOONS

 tAler. Create available nelkhhurhood sensation. Great backyard fun. Exciting beach attraction. Blow
up with vacuum cleaners or auto air hose. Sturdy enough for hard play; all other use Filled with bellum (available locally) use bal. trons high in the sky to attract crowds. adver. Amateur meteorologists use balloons to measure Aloud helfhth, wind speed. temperature, pres. kure, humidity st various heights. photokra. ghees can utilize for dow.eost aerial photos.
heernt Gov't surplus of heavy. black, neoprene been
rub Ne
-MP.
$\$ 2.00$ Postpaid
Stock No. 60,568-MP FACTURE! Stock No. 60,562-HP-4 Pt. diem. ate
$\$ 2.00$ Postpaid Stock No, 60,564-HP—8 ft, diam. Ire $\$ 4.00$ Postpaid 3.75 Postpaid
 - 3 $-\infty$
 .
$\$ 33.60$ FOE

- Will Fit Any Camera
I. Pot paid

MAKE YOUR OWN POWERFUL ASTRONOMICAL TELESCOPE
Grind Your Own Astronomical Mirror

Brand New, Quick-Charge, Industrial Surplus NICKEL-CADMIUM BATTERY
 Unparalleled Value

For the frat time a 6-solt, light-weldit nickel-cadmium capacity. Almost unlimited lifempe easing. tramp hour charge cycles with mired life- thousands of dischargein apus drops of waler per year provide purger kit. Just a few drops of water Der year provide full maintenance. Il uncampers, model builders, etc. Unequalled for recharge, able lanterns: cycle scouters. and boat lights: portable florescent and ultraviolet lights; electronic fash units, Buttery requires mont and of electrolyte: is seated lo prevent los. Deltwers pearly minimum out put at below freezing temperatures compared to 50% by 100% of batteries. No corrosive fumes under any stage of rweherue Cant bu damaged by accidental charge in reverse (but not recommended) Stud ape terminals on top $\Gamma^{1}{ }^{\prime \prime}$ apart marked for molarity: if /zen thread
 Stock No. 70.776-HP.
\$15.00 Postpaid
CHARGER KIT FOR G. VOLT BATTERY. CHAPKES in approx. 1 hr . Should off atutomulieally. attaches to \$lock No. 70.776 battery case etudes tradsiormer, ballast resistors, charger circuit board, mounting hardware, 8-it. cord. play switch, assembly instructions. Stock No. 70.807. MP
ONE 1.2 VOLT NICKEL-CADMIUM CELL
$\$ 8.00$ Postpaid
Stock No. 40.798-MP
$\$ 3.95$ Postpaid

HAI COUPON For RRE CATALOG MHP"

EDMUND SCIENTIFIC CD., Barrington, N. d . Completely Now 1966 Edition. 148 pages. Nearly 4500 Unusual Bargains.
Please rush fire Grant Cathorg. MP.
Name
Address
City.
State. Zip

Julian M. Sienkiewtcz, Edtor WA2CQL/KMD4313

T'hank you! In our last issue many of you discovered a questionnaire asking for information about you-our reader. You were asked many questions including such personal ones as income, age, occupation, etc. Replies began to come in almost immediately after you subscribers received your copies. A few days later replies from newsstand readers began to cover my desk. In fact, even now as I write this thank you note, my desk top is deluged with unopened
envelopes that demand my attention before I go home tonight.

I have made it a rule to open each envelope and examine the replies carefully. Each questionnaire's data was summed in my mind much in the same manner as data bits are digested by a digital computer. This first processing of the raw data, much cruder than the final tabulation will be, gives me a "first" impression of my readers, and indicates to me that the survey is doing the job it was designed to do.

Exactly how difficult it was to prepare the questions for a survey can be gleaned from the following short story once told to me by a Madison Avenue researcher. It seems that one cloudy day on a New England campus rich with ivy-covered halls a fiery object plummeted from the skies burying itself in the tupf amid the fanfare of a blinding flash and deafening roar. Naturally, every major scientific department in the University laid claim to the object: so before it was dug up an Academic Commission consisting of leading professors from the Physics, Chemistry, Biology, Mathematics, Geology and Medicine departments plus a few others joined forces to explore the buried object. Once removed

The only lab instrument you need to complete Scott's new 80-watt solid-state stereo amplifier kit

Scott's new solid state amplifier kit is completely protected against transistor blowout. An ingenious "Fail-Safe" circuit using an ordinary light bulb takes the load off expensive silicon transistors when you first plug in your LK-60 . . . so, if you've made a wiring error (almost impossible with this kit), no harm done! Other bright new ideas from Scott: preassembled, factory-tested modular circuit boards; fullcolor instruction book; alnazingly low price: $\$ 189.95$
Write for eamelote apee sheet: H. H. Scott, Inc., 111 Powdermill Road, Maynard, Mass. Exporr:; scott International, Maymard, Mass. Cable HiFI. Prices shighty higher west of Rockiea.
from its shallow grave, and washed clean of sod, the cosmic visitor turned out to be a solid block cube exactly one meter on its sides with no markings on any of its six faces. The cube defied all tests put to it. It could not be chipped, X-rays would not pass through it, flames would not sear it, chemicals would not dissolve it; just to name a few of the many tests put to it. Finally, the austere Commission announced its failure to the University's governing board declaring that no one could possibly discover anything about the cube-it defied analysis. To which, an obscure professor of Psychiatry asked, "May I try?" Naturally, he was sneered at, but the cube was placed in his trust for examination. Removed to a quiet room, the cube was placed on a soft chair. The professor sat down nearby, crossed his legs, opened his notebook and wet a poised pencil tip as he asked, "What is your name?"

The cube answered, "Harold!"
The moral of this story is that one must ask significant questions in order to get significant answers.

I believe significant questions were asked in our survey and you gave us significant answers. Armed with detailed knowledge about you, our reader, the editors of RadioTV Experimenter can better plan and prepare future issues. Even more important, we are now better prepared to ask our readers more detailed and significant questions in ensuing surveys. When you see them, we beg that you will respond as you have done in the past.

Again, let me say, "Thank you."
Dig that Computer. The clarion notes of a trumpet are now sounding forth from a machine. For the first time, the sound of a trumpet has been generated by a computer with such fidelity that professional musicians are unable to tell the difference between the computer sound and the real one. A special computer program was devised by researchers at the Bell Telephone Laboratories and was used to achieve the trumpet notes by Jean C. Risset, French physicist and composer on a visit to Bell Laboratories for the past year.

In the research study, trumpet notes were recorded on magnetic tape and converted into digital form, which was then fed to an IBM 7094 computer, Mr. Risset explained. The computer analyzed each tone for its sound wave frequencies and then displayed the spectra, or patterns, in graphic form.

THE SUPERSENSITIVE DARKROOM METER

S \& M MODEL A-3

$\$ 36.95$
in kit form
$\$ 41.95$
factory assembled
$\$ 5.00$
Carrying Case

Here is a precision instrument that meets the highest standards of any meter available today. The S \& M A-3 uses the newest cadmium sulfide light cell to measure light levels from twilight to bright sunlight at ASA speeds of 3 to 25,000 . This supersensitive darkroom meter is successfully used with movie or still cameras, microscopes, telescopes and it can also be set up for use as a densitometer.
The computer gives F stops from 7 to 90 and lists exposure time from $1 / 15,000 \mathrm{sec}$. to 8 hours; 4 range selection; EV-EVS-LV settings. The unit is also equipped with a large ($41 / 2^{\prime \prime}$) illuminated meter, paper speed control knob and a new battery test switch.
The S \& M A-3 darkroom meter is ideal for darkroom and studio applications where accuracy is a necessity. It's available fully-assembled from the factory, or in easy to assemble kit form. 505 Park Ave./New York, New York 10022
Please send the A-3 Supersensitive Darkroom Meter as checked below. I understand that if I am not satisfied, I may return the meter within 10 days for a complete refund.
Add 10% for Canadian and foreign orders N.Y.C. residents add 5% for sales tax

Positive Feedback

Having made spectra from musical notes, the computer then used its "knowledge" to make notes from spectra. It generated numbers which were converted to electrical signals. These signals were fed to a loudspeaker, resulting in the realistic notes of a trumpet. No fuse is needed when this computer blows.

Blackout Look Back. Repetition of the massive power failure in New York and New England last November can only be avoided by a major overhaul of the electric systems of these states. This is the essence of a report published by the American Public Power Association. APPA is composed of representatives from 2,000 publicly owned power systems throughout the United States, 90% of which are municipal companies, the other 10% primarily county systems. At least three deficiencies stand out as basic causes of the Northeastern blackout.

One is the lack of a major transmission line, capable of carrying high voltage and linking all the private and public utilities. Northeastern states do not have a backbone
line because their electrical system evolved piece by piece rather than on a regional plan.

Two outstanding transmission grids have been built by the Federal Government working from regional plans-one in the Tennessee Valley Authority and the other in the Bonneville area of the Northwest. Two more are under construction on the West Coast as a cooperative effort of Government and private power companies. If such a major line had been available to Easterners, emergency power could have been delivered immediately from the Virginia area to affected states. The power was available, but it could not be delivered.

A second, related cause of the failure was lack of Government authority to establish minimum standards in the design and operation of interconnections. Since the Northeast system is no more than a network of many small companies each of which joined at its own convenience, there has been no overall supervision of the size and efficiency of the links. In contrast, the West Coast has fewer utility companies and bigger links.

A third underlying cause of the failure was the alternating current used over most of the

The quality of Telex headsets has become well known to hams over the last twenty-five years. Here are three Telex headsets that deliver the kind of top grade performance that hams expect from Telex-

MAGNA-TWIN
For absolute maximum intelligibility under difficult QRM conditions... Super-comfort foam cushions ... Rugged, moisture. proof magnetic drivers give broad response, excellent sen sitivity... Sturdy construction of high impact plastic.

TELESET
Lightweight, economy version of the tamous Magna. Twin High performance, shock-proot Magna-Twin drivers...Designed especially for ham requirements.

MONOSET
Feather-light at 1.202 ... Eliminates headset fatigue....Sound from replaceable driver is fed directly into your ears through adjustable tone arms ... Telex quality construction assures reliability.

Write for descriptive literature today.

United States. Rather than flowing in a direct stream (DC), the electrical energy alternates (AC), making it mandatory for all the local companies to synchronize their AC power to the same clock. If one current gets out of phase, it throws the next utility out of whack and a "cascading" effect takes place.

This is what happened last November:
Because one switch in one plant in Ontario, Canada, shut off, the current was disrupted. A sudden decrease in power followed by an equally sudden increase threw off connections all the way to northeastern New Jersey and to the tip of Long Island.

The APPA recommended consideration of expanded use of direct current transmission lines. The West Coast is now experimenting with DC tielines in its regional system.

In all, the APPA made nine recommendations including a call for more hydroelectric sites in the Northeast. More than eight million kilowatts of undeveloped hydroelectric power exist in the New England and North Atlantic states. At present, most power in this area comes from steam.

One of the ironies of the power failure was that Consolidated Edison system in New York City, largest of the Northeast utility companies, had enough reserve electricity to service its entire area. But it could not get the stean up fast enough. Hydro-electricity requires no more than throwing open the gates.

Part of the Northeast's problem may be solved by construction of an Allantic backbone transmission line, proposed by the Yankee-Dixie Power Association. The line would carry high voltage, and extend from Appalachia to Boston.

BECOME A RADIO TECHNICIAN For ONLY \$26.95
BUILD 20 RADIO CIRCUITS AT HOME
with the New
Progressive Radio "Edu-Kit'"(B) All. Guaranteed to Workl

- No Knowledge of Radio Necessary
- No Additional Parts or Tools Needed Training Electronics

FREF SET OF TOOLS PLIERS-CUTTERS. TESTER.

Abstract

WHAT THE "EDU-KIT" OFFERS YOU The "Fafu-KIt" offere you an outstanding PRACTICAL HOME radios. using regular schemaitcs: how to solder ind wire in buto. fesklonal manner: how to service and trouble shoot radion. You wrili learn hoty to woth with punched metait chassis al well as the new Printerl Circuti ehassis. You will learn the principles of RF und AF anpliferf and uscllators, detectors rectifers, tent equipment You with learn and practice cocle, using the próaressive Code ellintor. You will build 20 Hecelver. Transmitter Cude Onclilator, injector circulic, hat learn how to operate them. You whil recolvo an weellent laek pround for TV. In bitef, you whi recelvo baslo educ lon in Elecironica and Rendo, Worth many thes the omali brlee you pay unly $\$ 26.95$ complete. PROGRESSIVE TEACHING METHOD The Prukressive Radlo "Exlu. KIt Me is the furemost edueatim. at radto kit til the worlid, and is universally acepted as ine universally aceppted as the lea tialning. The "Etuctran; lises the nioden th educationat princlple of "Iearm ny Doing." fou begin by bullaling a elmple the manner. hnd it y your own late, you construet more ad. learn more advanced thenry and tuchniques, that do work like Hotressional rabio technician. rhese clrcuits operate ous your resular AC or DC houso currme THE "EDU-KIT

\section*{THE KIT FOR
 EVERYONE} hack You do not mand in the millightent or melence The "Luu-Kit" is uned by young And old schools and clubs, by Veterans Auminternation for Vratning and rehablitition. One of the most important hspecta of the "Edu-KIt" la the provifle. ve welcume tudents to sena us their problems. whether related to any of the materlat cowered In the "EduKit" course. or encountered in otiter experiences fo tho beld THE "EDU-KIT" IS COMPLETE mlea. ceramic and pager dielectric condenmera, resintors, the siripa, coths. hardsware. tubink, pumched metat ehasste. Intruction man unia, hook tup wire, woldier. solenitum rectifers, volume controls, and instructions. You also recelve a useful ses of toots, plers. cutters, professional clectrle goldering from, and, self.pepwered, dynamie Riwlto thad Electrontes Trester. The "Edu-kit" atno In. Tracer nind the Progressive signal Infector, a Hish Fidelity Guide. FCC Anmateur License Training. and a Gulz buok. All parts. components. ele.. of the "Rau.Kit" are 100% uncon. ditionally guaranteed, is yours to keep. The complete price of thls pracheal home Radio and Electronics courgu lo only 20 .OS.

TROUBLE-SHOOTINC LESSONS

You will learn to trouble shoot and service fanllos, unlng the proressional Signal Tracer. the unique Sighal Injector, and the whll heip you with any techniest problems.

FREE EXTRAS

- Set of Toole Radio Book - Radio and Electronice Toster - Eectric Soldering Iron PMers Tester Instruetion Book Hi-Fi Book - TV Book © Quiz Book © Member. ship in Radio-TV Club. Consulation - Valuable Discount Card

ORDER FROM AD-RECEIVE FREENBONUS RADIO \& TV PARTS JACKPOT WORTH S15

T "Edu.Kıt", Postpaid, Enclosed FuJt payment of $\mathbf{\$ 2 6 . 9 5 .}$ "Edu-Kit" C.O.O. ${ }^{2}$ (End will Pay $\$ 26.95$ plus poatage Name Addrese

PROGRESSIVE "EDU-KITS" INC.
1186 Broadway Dept. 536NN Hewlett, N. Y. 11557

CB

RIGS \& RIGMAROLE

a what's new product column that's fun to read

Ever want more "talk power," ever think about getting something which offers more than just a little more than most CB rigs, or did you ever think about pocket CB'ing with a miniature rig? If you've been bothered by these things, Bunky, we've got some possible solutions for you.

Blasting the Band. Like the elusive "Flying Dutchman" lost gold mine, for years CB operators have been hot on the trail of something which they refer to as "talk power." "Talk power" is a term which you won't find in a dictionary, and its exact definition is rather inexact. For most CB'ers, it means boosting the signal in order to work out over longer distances without running either more power or higher modulation than is permitted under the FCC's prissy CB regulations. This, at first, may sound like an easy task, but it's about as easy as pouring hot butter into a wildcat's ear.

One way to boost your signal is via the superduper sky-hook method, but a fancy and elaborate antenna isn't always possible. One other, and often overlooked, method is by adding a dash of pepper to the rig's audio system. This is accomplished by means of some sort of audio processor such as a speech compressor, clipper, preamp, etc.

E. C. A. TalkPOW'r Audio Processing Unit

Of the ton-and-a-half of these gadgets now offered to CBers, one of our favorites is the "TalkPOW"r" audio processing unit being marketed by E.C.A., 1236 N.E. 44 St.. Oklahoma City. Okla. 73111. Available for $\$ 17.95$ wired and tested (less battery and plug) or $\$ 14.95$ in kit form, or the printed circuit board alone for $\$ 2$, the "TalkPOW'r" will work on virtually any CB rig.

Tucked away in its 3 transistor circuit is the ability to give up to 40 db of voltage gain for soft voices, and up to 20 dt clipping for average microphone and voice. While all of this electronic hocus pocus doesn't make one whit of difference in the actual output wattage of your rig, the "TalkPOW"r" unit pumps a soupedup amount of modulation onto the carrier. It even works on rigs which have existing speech boosting circuits built-in.

Placing the device into the circuit of a CB rig is a matter of unplugging the mike, plugging the "TalkPOW"r" into the mike socket on the rig, and then running the mike into the plug on the processor. Output level can be adjusted, and you can even switch it out of the circuit if you aren't in the mood to melt down the other guy's receiver.

The whole she-bang is a little larger than two packs of cigarettes-watch it light up your signal! Can't be matched.

CB Rolls Royce? The people at Amphenol Distributor Division, 2875 S . 25th Avenue, Broadview, Ill.. have whipped logether a rather unique piece of communications gear. such as "you can't hardly find no more" on 11 meters. Dubhed the Model 650, it hums along on ix transistors and 9 diodes.

Within its rather small cabinet are some pretty sophisticated features such as 10 channel transmitter with both crystal and tunable receiving provisions, built-in PA system. combination S-meter/power output meter, adjustable squelch. crystal controlled first oscillator with

Amphenal Model 650 CB Yransceiver
two 1F stages for superior stability, selectivity and adjacent channel rejection.

Amphenol claims that the power output peaks at $31 / 2$ watts with modulation percentage running over 95%, all of this being filtered through twin harmonic traps so as to let Uncle Elmo watch his favorite TV program without benefit of your CB signal.

Built like a brick space station, the Model 650 is just about indestructible. For instance. it will function at temperatures as low as 25 degrees below zero, and shaking such as will seldom be encountered in normal use. The set is housed in a cabinet made of heavy-gauge steel.

With its self-contained power supply for 12 volts $D C$ and 115 volts $A C$, it comes equipped for operation on Channel 11. Retail price is \$229.95.

Mighty Midgets. A relatively new comer to the CB marketplace has issued forth two hand held units which should be snapped up for 1001

Robyn "Walkie-Talkie" (left) and R'T. 400 (right)

FIRST AND ONLY compaci scrulox. screwndiver sels

Increasing use of Scrulox square recess screws in appliances, radios, TV sets, electronic instruments . . . even the control tower at Cape Kennedy . . . has created a need. A need for compact, versatile driver sets. Small enough to tuck in a pocket. Complete enough to be practical on shop bench or assembly line.
Now, here they are . . . from Xcelite, of course.

Five color coded midget Scrulox drivers - \#00 thru \#3
One midget nutdriver - $1 / 4^{\prime \prime}$ hex
"Piggyback" torque amplifier hande increases reach and driving power
See thru plastic case doubles as bench stand

XCELITE INC. - 64 bank ST., ORCHARD PARK, N. Y. I
Send Bulletin N1065 on Scrulox Screwdriver Sets.
| name
address
city state \& zone
In Canada contact Charles W. Pointon, Ltd.

Fiil in coupon for a FREE One Year Subseription to OLSON ELECTRONICS' Fantastic Volue Packed Catalog-Unheard of LOW, LOW PRICES on Brand Name Speakers, Changers, Tubes, Tools, Stereo Amps, Tuners, CB, and other Valves. Credit plan available.

NAME
ADDRESS
CITY \qquad ZONE
_STATE
If you have a friend interested in electronics send his name and address for a FREE subscription also.

OLSON ELECTRONICS

 INCORPORATED475 S. Forge Street Akron, Ohio 44308

CB Rigs \& Rigmarole

uses. The company is The Robyn Company, 4303 Kroes Road, Rockford, Mich., and their sets are called the Robyn Walkie Talkie and the Robyn R/T-400 100-mw Transceiver.

The Robyn Walkie Talkie is a full one watr. two-channel hand held CB station. It comes with batteries, leather carrying case; earphone. external battery or AC power adapter jack. squelch control with RF amplifier and combination battery and modulation meter. NickelCadmium rechargeable batteries and charger are optional. Price is $\$ 69.95$ each, or $\$ 129.95$ for a pair.

In the low-power department, the R/T-400 is a pocket size. single channel unit running onetenth of a walt input. The 9 transistor circuit features a superhet megacycle inhaler and : transmitter which averages about a mile coverage. Price is $\$ 49.95$ for a pair of the little devils.

Look Ma, No Hands! Safety first usually means CB second, because it isn't always easy to zip along the highway with a mike and its push-button in one hand with the steering wheel in tuther. Here's a way of eliminating the problem, while still having full use of your CB station. An outfit known far and wide as Roanwell Corporation, 180 Varick St.. New York. N. Y. 10014. offers a combination head-

set/microphone which allows you to keep boith hands on the wheel. All you need do is put your push-to-talk button on the steering wheel. or on the floor under your left foot. This button kicks the rig on and off and that's all there is to it!

Prices vary, as there are a number of mike types and impedances available for various rigs.

If you go mobile, it may pay you to look into this item. Remember the mobile CB'ers lament:

> He went sizzling don'n the highuay, One hand held mike and switch. A truck pulled out in front of him. He didn't even twitch.

Pretty as a Picture. We saw these QSL plaques and they looked so neat that we thought you would like to know about them. You send the manufacturer your QSL card and he reproduces it via a new process called "Permatography" which gives you an image on a metal plate. The image is actually a part of the metal and can't be rubbed, worn, corroded. chipped or peeled off-and it won't fade. The metal "pematograph" of your QSL is then mounted on an attractive wood-grain plaque with a hanging ring.

Permo-Pic Corp. Attractive Wood-Grain Ploque
Two sizes are available. $3^{\prime \prime}$ by $31 / 2^{\prime \prime}$ at $\$ 3.50$ ppd. and $51 / 2^{\prime \prime}$ by $61 / 2^{\prime \prime}$ for $\$ 4.95 \mathrm{ppd}$. You can also have photographs or even your CB license done up this way. The manufacturer is PermaPic Corporation of America. Box 67. New Hope. Pa.

> Police, fire, ambulance emergency calls, CD, weather...

tune in on the Squires-Sanders

FM Alert ${ }_{\text {Firss crystal }}$ FM emergency re-

 ceiver at a down-to-earth price. Two crystal receive channels plus tunable control. Sensitive, selective, stable receiver. Smooth, adjustable squelch. Choice of two models: FM Alert 152-152 to 174 mc ; or FM Alert 30-30 to 50 mc . Only $\$ 89.95$. Matching speaker $\$ 9.95$. Sold by communications specialists, or write Squires-Sanders Inc., Millington, N. J. 07946.

Squires

FAMOUS WaLLIE-TaLKIE KNIGHT KIT ${ }^{\circ}$ \$588 each Postpaid

Buy a pair for two-way fun.

- Tens of thousands sold at $\$ 8.88$ each! - No license needed; operates hours on one battery.
- Complete with Ch. 7 transmit crystal - Fun to build yourself.
Even Allied has never before offered such value in a walkie-talkie kit! Sends and receives messages up to $1 / 4$ mile with 3 -transistor circuit. Takes just a few hours to assemble. Sensitive super-regenerative receiver, push-to-talk transmitter. Telescoping antenna. Blue case $53 / 8 \times 27 / 8 \times 13 / 4^{\prime \prime}$. Add 27 C for each battery
- Use coupon below to order your kit now.
- Check box to receive latest Allied catalog.

USEFUL and EDUCATIONAL ELECTRONIC KITS

EXCELLENT training and o useful electronics product these are among benefits you will derive from Irans-Tek's educational kits. They ore designed for all levels af do-if-yourself experience, including the beginnee. All kits come with schematic and pictorial diagrams and step-by-step instructions for easy construction. All components are superimposed on the schematics bx means of skin packing. Kits include a code practice oscillator, 125 -waft hi-low switch, 500 -wall hi-low switch, regulated power supply, intercom amplifier, ultro-high gain amplifier, variable as control, and transistorized metronome. Prices: $\$ 1.79$ to $\$ 7.50$.
SCHEMAT-A-KIT is a registered trade mark of Trons-Tek.
For mare details, write or phone:
RUNS $=$ EK meo.co., me.
300 NORTH AVE. GARWOOD, N. J. 12011 789-1047

Everything is going up-wages, astronauts, hem lines and the cost of publishing. But you wouldn't believe it by scanning the prices for the texts reviewed in this issue of Radio-TV Expertminter. In fact, for only one fin you can pick up all four books and still have enough scratch left to buy a good pie-Castro cigar.

Hi .Pi Duet. Today's music lover has a problem. Never before has there been so much high fidelity equipment for reproducing music in the home. On the other hand, without a technical background, the music lover can feel himself to be ill-equipped to make decisions on what kind and make of system to buy or build, and how and where to install it to get the best results on what is after all a considerable investment. Even when these questions are dealt with, his problems are only just starting. He has to live with a tangle of wires, knobs and tubes as mysterious and complex as the organism of a newborn baby, and demanding as much attention and care. Hum, distortion, or other disturbances can occur and he may have no means of knowing if these are the result of a defective component, or a simple misadjustment. A friend's set may sound better. Is this because his system is a better one, or because his speakers are differently placed, the needle lighter, or the curtains made of different fabric?

Such information is not always easy to come by. Two concise, reliable guides to the how and the why of high fidelity written specially for the layman, but also offering a great deal of useful advice for all owners and would-be owners have just been reissued by Dover in paperback. They are High Fidelity Systems: A User's Guide by Roy Allison, currently Plant Manager of Acoustic Research, Inc., and a former Audio Editor of High Fidelity magazine; and Reproduction of

90 pages Soft cover 46 illus. $\$ 1.00$

Sound by Edgar Villchur, President and Director of Research at Acoustic Research, where he has designed AR speakers and turntables. Both books sell at $\$ 1.00$ each.

High Fidelity Systems has been expanded and revised. It covers every aspect of choice of equipment. installation. operation and maintenance in clear, non-technical language. helped by detailed charts illustrating each component, its relation to the others, how it should be wired and so on. After an initial chapter on mono systems, the author covers every stereophonic component and discusses how 10 adjust the system and other fundamentals. While his book is not intended to be a buying guide to specific brands of hi-fi products, he does give helpful guidelines on how to buy, what questions to ash one's dealer, what conditions are best for testing, including which records should be played to illustrate various characteristics. and what io look for in general.

92 pages Soft cover 69 illus. $\$ 1.00$

In Reproduction of Sound. Villchur explains in non-technical language how the different parts of a reproducing system work. After a description of sound in general. he discusses such topics as standards of high fidelity. sound reproducing systems, disc recording, pickups and needles. pickup arms, amplifiers, preamplifiers and control units, power amplifiers, negative feedback, loudspeakers, speaker enclosures, and room environments. Historical developments are also described.

To get your copy of either book write to the publisher. Dover Publications. Inc.. 180 Varick Street. New York. N. Y. 10014, or check your local book store.

Tape Users Guide. Relatively few owners of tape recorders. or potential buyers are aware of the tremendous versatility of their machines. Most persons view the tape recorder simply as a supplement 10 or as an alternate for a record player.

To acquaint the growing number of those who enjoy tape recorders with their full potentialities, Elpa Marketing Industries. Inc. ashed Joel lall, noted expert on lape editing. and Martin Clifford. author and editor, to prepare a book on this subject. Their joint efforts resulted in a bouk entitled, "Your Tape Recorder: Hon to Use it, How to Enjoy it. How 10 Get More Out of it." This attractively illustrated book contains such subject headings as: The Reproduction of Sound:

giant new catalog

Dep1. RT, 1012 McGee, Kansas City, Mo. 6\&186/SEND
| Rusn me FrREF 1906 R-A Catalog.

 gain high pay as a TV, Radio. Eleetronics, etc. Technician.
19 TRAINING KITS INCLUDECI You recelve a Multh-Tenter. Onclllabor: You receive a Mulli-Tenter, Sikmal Generator, Electronic Timer, Regenerative Kadio, 24* TV Eet (optionalzand other
 askinet No oblbgation.

CHRISTY TRADES SCHOOL

Chicaoo. 111 W. 60625

CHA1STY TRADES SCHOOL, Dept. T 1711

Pleage end me the 3 FREE BODKS and Spectal Form for PAYING LATER PROM EARNINGS MADE WMILE LEARNING.
\qquad ADDRESS

FULL OF TOP QUALITY ITEMS-
Transmitters, Receivers, Power Supplies, Inverters, Microphones, Filters. Meters, Cable, Keyers, Phones, Antennas, Chokes, Dynamotors, Blowers, Switches, Test Equipment, Headsets, Amplifiers, Converters, Control Boxes, Indicators, Handsets, etc., etc. SEND 25 (stamps or coin) for CATALOG and receive 50t CREDIT on your order. Address Dept. 31.

FAIR RADIO SALES P.O. Box 1105 LIMA, OHIO: 45802

 EARN BIG MONEY!
Searn APPLIANCE REPAIRING

Leari at home in your spare time how to fix electrical appliances using Christy Elec. tronic Trouble Tracer, how to wire homes and stores, rewind motors, how to get busi-
$3001 /$ in your kitchen, charge. Make $\$ 5-6$ per hour in your kitchen, of basement. Operate your own fix-it shop. Pay later from earnings. CHRISTY TRADES SCHOOL
Dept.A.ISII 3214 W. Lawrence Ave., Chicago 60625

SEA ANGLER

FOR INBOARD, OUTBOARD OR OUTDRIVE
BOATCRAFT PRINT \#360. Save $\$ 1,000$ or more while building this outstanding new performer. Here is the new look in hull design, a boat that adapts the principle of a soft riding planing bottom into a boat for building at home. SEA ANGLER can cut through waves from any quarter without pounding, porpoising, or losing steering control. Runners along the bottom raise the craft up onto high-speed plane without any sacrifice of out standing sea-kindly qualities.

BDATING JOURNA

RTV'789
Craft Print Div., 505 Park Avenue, New York, N. Y. 10022

1 enclose $\$ 5$
Allow 3-4 weeks for 4th class delivery. 1st class delivery may be requested for an additional 50¢. (Outside L.S.A. \& Canada add $\$ 1$ for lst chats delivery.

NAME \qquad
ADDRESS
CITY
STATE \qquad ZII' CODE \qquad N.l.C. residents add 5%.

32 poges Soft cover Over 20 illus. $\$ 1.00$

How a Tape Recorder Works; How Magnetic Tape Works; Types and Selection of Tape; Type of Tape to Use; How to Record; Recording Speed; Recording Live; Using a Mixer; Wow; Flutter; Superimposing; How to Splice; EDITall Blocks and EDITabs; Personality in Speech; Storage of Tape; plus suggestions on the numerous uses for tape recorders.

Your Tape Recorder is sold for $\$ 1.00$ through local Hi-Fi dealers or can be obtained directly from Elpa Marketing Industries, Inc., Dept. PUS, New Hyde Park. N. Y.

RCA Does It Again. The newest RCA Receiring Tube Manual, RC-24, continues as the most complete and authoritative reference in its field at its price. The new streamlined edition, more compact and easier to use than ever, provides up-to-date information on receiving tubes for home-entertainment applications, picture tubes for black-and-white and color television receivers, and voltage-regulator and voltage-reference tubes. In fact, it's the best vacuum tube reference manual the experimenter can buy.

As in the previous edition, the Technical Data Section is restricted to detailed coverage of active receiving tube types. Definitive data on discontinued and replacement receiving types, on picture tubes, and on voltage-regulator and volt-age-reference tubes are presented in tabular charts for easy reference and comparison.

All the other features which make the $R C A$ Receiving Tube Munual a perennial best seller
still remain: the well illustrated, easy-to-understand text chapters; the handy Application Guide for Receiving Tubes; the popular Circuits Section with its many timely and practical tube applications; and the many other aids which make the manual an indispensable tool for the use and understanding of receiving tubes.

Copies of the new RCA Receiving Tube Manual $R C-24$ may be obtained from radio parts distributors throughout the U.S. A., or by sending $\$ 1.25$ to Commercial Engineering, RCA Electronic Components and Devices, Dept. RTVE, Harrison, New Jersey 07029.

Sound of a Sunken Ship
Fathometer depth sounder aboard a salvage vessel graphed this view of sunken liner SS Andrea Doria lying on her side in 216 feet of water off Nantucket, Massachusetts. Electronic view of wreck was made with a Raytheon depth sounder that sends out ultrasonic impulses and records echoes bouncing off the bottom, obstructions, and passing fish. Various teams of would-be salvagers have been attracted to the site since the ship went down on July 25, 1956.

Kit or Assembled! SATISFACTION GUARANTEED! You've read all the ads - Heard all the claims - Now buy the VERY BEST. FURY XII costs a little more but we ADD QUALITY rather than CUT COST ! !!! FURY XII Kit............ \$ 39.95 FURY XII Assembled..... \$ 59.95
I MICRO-KITS, INC.
1900 Crest Orive, Eugene, Ore.
\square I ENCLOSE $\$ 39.95$ for kit.

- I ENC OSE \$59. 25 :559.0

I NAME \Rightarrow OOESSS
ICITY S*~~
L---------------...

TEST ALL RADIO and TV TUBES!

The revolutionary new home tube tester that's tast, easy and accurate. Tests all radio and TV tube filaments, picture tubes, appliances, lamps, heaters, fans, etc. Fuli price including batteries, $\$ 2.49$ plus 25 c for postage and handling. Complete instructions included. Fully guaranteed.

Send certified cheque or
money order to

Hughie Enterprises, 363 Dieppe Street, Dept.RE-1 London, Ontario, Canada

WIRELESS "WIKE"TALKS TO ALL RADIOS

 by radio waves. Juat toush bullon and talk fhyo uititing

Sand Only $\$ 200$ (cath cla M.O. azd pay poatun 87.85 delivery sont comploteriendy so operat. Pr PEE
 this ad NOW. Arailible oaly fro
Dent. WRE-G. Kparmey, Mobr.

LEARN

Fix TV. destgn automation systems, Laam transistors. complete electronics. ('ollege lerel home situily courses taught mo you idin underatand them. Earn more in the highly pald eldectronled industry. Computers. Missiles. thenrs and vimetlesl. Klia furnished. Uret 30.000 graduates nuw enmiosed. liesident flasas, at ute

american institute of engineering if technology $1139 E$ Wost Fullerton Parkway Chicare, IHinols 60614

DOES BUYING HI-FI COMPONENTS CONFUSE YOU?

It's no wonder with so many to choose from. Just which do you buy-which is really best for your home?
If this is your problem, or if you just enjoy keeping up-to-date on the newest components available, the new Mid-Year 1966 edition of HI-FI BUYERS' GUIDE will be a most valuable companion.
You'll find a thorough and detailed section devoted to test reports conducted by independent laboratorics. In this issue of HI-FI BUYERS' GUIDE, this objective testing organization has reviewed high fidelity integrated stereo amplifiers (preamps and power amps on one chassis-both stereo solid state and vacuum tube models), high fidelity stereo phono cartridges and high fidelity stereo headphones.

Each unit reviewed has been rated: Approved - Not Approved

There's a comprehensive feature on the best methods of selecting a microphone for your tape recorder. This is more than an expanded glossary of terms; this article explains the various microphone types and how their characteristics and prices should be considered in light of the buyer's recording needs.

There's a provocative article on Record Clubs; another on the latest trends in "housing" high fidelity components in furniture. There are 96 highly informative pages which will aid you in making your next high fidelity purchase an easy and fun-filled task.

On sale NOW, $\$ 1.25$

HI-FI BUYERS' GUIDE/505 Park Avenue/New York, RTV-789

 N. Y./10022Ptease send me my copy of HI-F! BUYERS' GUIDE. Enclosed is $\$ 1.50$ (includes postage \& handling).

Name
(please print)
Address
Clty
State \qquad

Power Supply

Experimenters! Kick the power supply building habit with the new Precise Electronics regulated power supply. A compact 2 -in-1 instrument providing variable regulated dc plate and bias voltages, plus ac heater voltages. It has separate de meters for plate voltage and current.

The Model 780 provides precise regulation from 0 to 400 volts at high current, up to 150 milliamperes. It gives up to 6 amperes at 6.3 vac for operation of vacuum tube heaters. New safety and convenience features include a high voltage indicator, a separate regulated bias supply, and separate meters for voltage and current. The 780 sells for $\$ 99.95$. For more information and complete specifications write to Precise Electronics, Designatronics Inc., Dept. DP-1, 76 East Second St., Mineola, L. I., New York 11501 .

Precise Electronics Model 780 Regulated Power Supply

Reels on Wheels Over the Hump

Martel Electronics has recently introduced their new Auto-Sonic stereo 603 M Tape Deck the first and only 4 -track cartridge tape deck for the auto that needs absolutely no installation. Its handsome and unusual design is created to fit over the hump on the floor of any car adjustable speakers can be raised and low-

Martel Electronics 603 M Tape Deck
ered. The 603 M plugs directly into the cigarette lighter. A twenty-five foot extension cord permits portability and convenience. It not only plays in the car, but can be carried onto the beach, hoat, or patio. An AC converter is available which enahles the user to listen to tapes at home or at office as well. The Auto-Sonic 603 M by Martel is the first to offer all these features as well as over 10,000 musical selections to choose from. If preferred, the 603 M can be permanently attached under the dash. For more information on the first car stereo tape deck that needs no installation, write to Martel Electronics, Dept. DP-1, 2356 S. Cotner, W. Los Angeles, California.

It's the Nuts

Color coded, solid and hollow shaft nutdrivers manufactured by Xcelite Incorporated are now being offered in new sets which feature handy, pebble-grain plastic cases for keeping the tools in good order on the workbench and

Xcelite HS6.18 (lett) and 77 (Right) Color Coded Nutdriver Sets

IN THE JUNE ISSUE
OF SCIENCE \& MECHANICS, BEGIN THE FIRST OF AN ABSOLUTELY FANTASTIC SERIES OF DOCUMENTED ARTICLES ON THE "MANNED" SOVIET SPACE FLIGHTS THAT WERE NEVER MANNED!

"My contention is that the Soviet Union uses its real-and often very crude-achievements in space research as a springboard for spectacular hoaxes. Foremost among these hoaxes is their manned spaceflight program. The status of their technology cannot support a man-in-space program at this time. Nor have they ever actually documented one of their manned spaceflights beyond a question of doubt. How do 1 know this? SCIENCE \& MECHANICS assigned me to the job of unearthing this and many other phony qualities inherent in flights of the Russian manned space ships." So begins space expert Lloyd Mallan's sensational expose of "The Russian Spacemen Who Weren't There."

Don't miss this first of 3 provocative AND documented articles in the June issue of SCIENCE \& MECHANICS, now on sale at your newsstand.

SCIENCE \& MECHANICS MAGAZINE
505 Park Avenue
New York N. Y. 10022
 LIGHT UP ○ ○ O O O

In the May/June issue of ELEMENTARY ELECTRONICS, now at your newsstand-754-read the fascinating article "What's New In Lighting." This feature lights up the latest technical advances in the field of illumination, along with some brilliant ideas on improving your night. time see-ability.
Make sure you receive this fascinating publica-tion-use the coupon to subscribe.

```
ELEMENTARY ELECTRONICS/ RTV.789
505 Park Avenue/New York, N. Y./10022
I am enclosing }\square$4.00\mathrm{ for 1 yr.; }$7.00\mathrm{ for 2 yrs.;
O $10.00 for 3 yrs.
Please begin my subscription to ELEMENTARY
ELECTRONICS. ( outside USA & Canada, add 75%
a yr.)
```

Name
(piease print)

Address

City State...................Zip.

WHAT MAKES RADIO-TV EXPERIMENTER SUCH FASCINATING READING?

It's just that in this period of time, electronics has progressed to such a fine art, that It appears in almost every phase of our existence. Subtie at times, overpowering at other times, but certainly we are living in an era where a knowledge ol electronics is basic.
And that's what makes RADIO-TV EXPERIMENTER so interesting. It covers the field, whether it be theory, construction; hi-fi or audio; ham, CB, SWL; AM, FM, TV, or so many of the other related electronics subjects. It covers them, reports them, describes them, illustrates them; RADIO-TV EXPERIMENT. ER is certain to contain that subject of electronics which is most important to you . . . that's why it's so lascinating. Try it and see!
on service calls. Snap-lock lids shut tight to protect tools from scattering. Exceptionally compact, the kits fit neatly in a tool box. The solid shaft set can also be hung on a wall by means of a hole in the lid of the case. Molded compartments keep tools from tumbling out.

Set No. 77 contains seven solid shaft nutdrivers with hex openings from $3 / 1 \mathrm{~B}^{\prime \prime}$ thru $3 / 8^{n}$. Set No. HS6-18 contains ten hollow shaft nutdrivers with hex openings from $3 / 16^{\prime \prime}$ thru $9 / 18^{\prime \prime}$. Nutdrivers are of professional quality and have precision fit, case-hardened sockets; polished and plated steel shafts; and shockproof, breakproof. plastic (UL) handles.

Complete information is obtainable by requesting Form S865 from Xcelite Incorporated, Dept. DP-1, Orchard Park, N. Y. Can't wait? Then drop in on your local radio replacement parts dealer and ask him to show you Xcelite's Sets No. 77 and No. H 56-18.

Dictate on the Run

The new portable StenOtape Dictating Machine G-540 may be operated three ways-on "C" batteries, on a 12 volt DC auto battery or from the normal AC current (105 to 240 volts, 50 or 60 cycles). Change-over from one power source to another is automatic. No AC adapter is needed.

American Geloso StenOtape Dictating Machine
A magnetic tape unit, the StenOtape G-540, may also be used for transcribing and conference recording. It operates two hours on one self-loading reel of tape. Remote control microphone starts and stops the tape. Complete controls are available for dictating, stop, review, transcribing, fast rewind and fast forward. One very important note, the StenOtape G-540 is compatible with all capston drive, reel to reel, magnetic tape machines.

Small in size-the unil ueighs only 6 lbs. and lists for $\$ 148.50$ somplete with carrying case, shoulder strap. remute microphone. tape and batteries. A wide variety of accessorics, including a foot pedal, dynamic lavalicr microphone,
telephone pick up. etc. are available. Details and literature may be secured from StenOtape Div., American Geloso Electronics. Inc., Dept. DP-1.251 Park Avenue South, New York, New York 10010.

SSB/CW Ham Xmitter.

Hallicrafters new amateur band transmitter employing advanced single-conversion signal path circuitry puts out 180 watts PFP input on SSB and 150 watts on CW. Designed as a companion to the company's previously announced SX-146 receiver, the HT-46 may be worked independently or inter-connected with the SX-146 for transceive operation.

Hallicrafters Model HT. 46 Amateur Transmitter
The HT-46 is all-new from the chassis up. Frequency coverage is $3.5-4.0$. 7.0-7.5. 14.0-$14.5,21.0-21.5 \mathrm{mc}$ and $28-30 \mathrm{mc}$ in four 500 kc steps. A crystal is provided for $28.5-29.0 \mathrm{mc}$ coverage. Other 10 meter crystals are optional. Housed in a compact, cleanly designed cabinet. the HT-46 measures $57 / 6^{\prime \prime} \mathrm{H} \times 131 / \mathrm{x}^{\prime \mathrm{W}} \times 11$ "D. It has a 9 mc quartz filter for upper or lower sideband. It features grid block keying for CW, and push-to-talk operation with provision for optional plug-in VOX. Solid state circuitry is used in the self-contained power supply. Unwanted sideband and carrier suppression are rated at better than 50 db .

A full complement of front panel controls is conveniently grouped for ease of operation. They include: band selector, frequency tuning. driver tuning, dial calibration. microphone gain. carrier level, a MA-HFO meter, and all mode controls for USB. LSB, and CW-Tune operation. A key jack. antenna jack. VOX accessory socket. and receiver input for transceive operation are located on the rear apron.

Amateur net price of the HT-46 is $\$ 349.95$. The accessory HA-16 VOX adapter has an amateur net price of $\$ 37.95$. Complete specifications may be obtained by writing to The Hallicrafters Co.. Dept. DP-1, Sth \& Kostner Avenues, Chicago, Illinois 60624.

DC to 6 Mc.
 Solid-State Scope

A new 3 -inch completely solid-state I)(6 mc . oscilloscope that weighs only $16 \mathrm{lbs} .$, uses less than 15 watts of power, has cali-

TAPE THIS AD TO THE BACK OF YOUR TV SET ALL TV-RADIO Recemit TUBES

All Brand New, all at a flat discount price of only No exceptions
Si, repardlem of lust price. including the new color tubes.

- All Tubes 1 st avality
- All Sold on Written

24-MDNTH WARRANTY

- All orders SHIPPED ist

CLASS SAME DAY REC'D.!
Order replacements for your defective tubea, A fat \$8.00 each, plus Sos postage and handiling for your enture order. iddrels Dept. WTE.C7B.

UNIVERSAL TUBE CO. ozone Park, N, Y, 11417

FRANCHISE OPPORTUNITY: Univeral Tube Ce. ean sot you up in your own highly-prontabia business as an Eleetron Tube Distributor, with an exclusive territory, selling to appilance deaters andor servicemen. For full detells write lment. diately to Franchise whanager. address above. $_{\text {a }}$

TRANSISTORIZED CONVERTER KITS $\$ 5.00$ EACH

Three kits available. Marine 2.3 mc , police \& fire, high band $100-200 \mathrm{mc}$, low band 26.60 mc . 1 me tuning on car radio. Full instructions.

ANY KIT $\$ 5.00 \mathrm{pp}$. MESHNA 193 ALLERTON	WIRED $\$ 15.00 \mathrm{pp}$. LYNN, MASS. 01904
	Astina

SCIENCE EXPERIMENTER

The magazine dedicated to the youth who is interested in experimentation, construction and "blue-ribbon" Science Fair entries.

NEW PRODVCTS

brated vertical sensitivity, calibrated sweep times and triggered sweep is now available from Allied Electronics. The Knight model KN-5005 Scope, the latest addition to Allied's private brand line of instruments. is designed to meet every modern-day testing requirement. It is priced at $\$ 425.00$.

Knight KN-5005 Solid-State Oscilloscope
Specifications for the vertical sweep system are: Sensitivity: $05 \mathrm{v} / \mathrm{division}$ Linear over 8 divisions (2"). Frequency: compensated attenuator; ten steps (X1 to X1000 attenuation). .05 v to $50 \mathrm{v} /$ division: 3% accuracy. DC response: DC to 3 mc . at 4 divisions amplitude: DC to $6 \mathrm{mc} . \pm 3 \mathrm{db}$. at 2 divisions; useful to 12 mc . AC response: 10 cps to 3 mc . at 4 divisions amplitude; : 10 cps to mc . at 2 divisions; useful to 12 mc . Rise time: $.075 \mathrm{~m} . \mathrm{sec}$ at 2 divisions amplitude; $1 \mathrm{~m} . \mathrm{sec}$ at 4 divisions.

Specs on the horizontal system are: Sweep speeds: $1 \mathrm{~m} . \mathrm{sec}$ division to $100 \mathrm{~m} . \mathrm{sec} /$ division in 6 steps (18 steps to $500 \mathrm{~m} . \mathrm{sec}$ used with X1, X2, and X5 multipliers). Accurate within 3%. $1 \mathrm{~m} . \mathrm{sec}$ to $50 \mathrm{~m} . \mathrm{sec} /$ division; $\pm 10 \% \cdot 100-500 \mathrm{sec}$. Continuously variable uncalibrated sweep speeds over above range. Multiplier (X5) increase sweep rate to 0.2 $\mathrm{m} . \mathrm{sec} /$ division.

Trigger Modes specs are: Frec run, plus positive and negative internal and (adjustable trigger level) external slope. Stahle automatic sweep-when in frigger mode, trace is definitely triggered at the slope and level set; cannot stop sweeping or free run. Delay between signal reaching trigger level and start of sweep is about .75 microsec. Additional information may be oblained
from Allied Electronics Corp., Dept. JR, 100 N. Western, Chicago, 1ll. 60680.

Automatic Voice-Control Recorder

A new voice-operated automatic "Sound Camera" has been added to the Concord line of "Sound Camera" portable, hattery-operated tape recorders. Using the Concord VM-10 voice-control microphone, the new Model F-88 starts when it picks up sound and stops when the sound stops. The F-88 is Concord's latest extension of its emphasis on "Take-anywhere" portables.

Concord VM-10 Voice-Control Microphone
Only $5^{\prime \prime} \times 7^{\prime \prime} \times 3^{\prime \prime}$, the miniaturized unit weighs just two pounds. Because it is dual track, the F-88 permits an hour's play on a single reel of tape. Precision operation is achieved through use of a capstan-drive tape transport mechanism, as well as a governorcontrolled, servo-type DC drive motor and Concord's flux-field head for improved frequency response at low tape speeds.

The F-88 "Sound Camera" may also be operated manually by pushbuttons or remote control on microphone if voice operation is not desired. Other features include recordlevel and battery-level indication, extension speaker jack. AC-adapter jack, and optional direct recording from radio, TV or record player.

Specifications include-recording time: 1 hour on a single reel of tape (triple play). Recording Speed: - Standard 17/8 IPS recording speed. Power Source: - Four standard flashlight batteries (size "C"). Battery Life: - Approximately 12 hours. Dimensions: $-7^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}$. Weight: - 2 pounds.

Price of the F-88 is under $\$ 80.00$. More information is available from Concord Electronics Corporation, 1935 Armacost Avenue, Los Angeles, California 90025.

Radio-TV Experimenter brings the knowhow of electronics experts to its readers. If you have any questions to ask of this readerservice column. just type it on the back of a 4i postal card and send it to "Ask Me Another," Radio-TV Experimenter, 505 Park Avenue. New York, New York 10022. The experts will try to answer your questions in the available space in upcoming issucs. Sorry, the experts will be unable to answer your questions hy mail.

UHF-TV: Channels 14 to 83

There is a new TV station on the air here, Channel 47. My TV set's channel selector indicates only chamels 2 through 13. How can I tune in Channel 47?

> —B. B.. Flushing. N. Y.

Channel 47 is in the UHF television band where there are many unused channels. All new TV sets are now required by law to be capable of tuning in all VHF and UHF television stations. To tune in UHF stations with an older TV set you need a UHF converter. They cost as little as $\$ 15.95$ at Lafayette stores in the New York City area. Try Allen Electronics or other radio parts stores in Flushing. When you use a converter with your old TV set, you'll then have a choice of nine stations in both bands, including Channel 31 which is operated by the City of New York.

Cheap Tester

Over five years ago I built a tester using the circuit shown in the diagram. I have since forgotten what the instrument is called. I find that I can test a capacitor by connecting the red and black test leads to it. If the neon lamp flashes only once, the capacitor is O.K. But, what is the green lead for? (See diagram A below.)
-H. H., Menasha, Wis.
It is a combination continuity and capacitor tester. It looks like it is hooked up wrong. If you rewire it as shown in diagram B (below). it will work as a capacitor and continuity tester using the red and green test leads. You will also have a small DC power supply (about 150 volts) using the red and black leads. Resistor R1, shunted across filter capacitor C stabilizes the voltage and bleeds off the charge in \mathbf{C} when the AC plug is disconnected.

160-mc Aero Bander

How can I adapt the Aero Bander described in the December-January issue of Radio-TV Experimenter for muning in 152 to 162 -mc band stations?
-L. N., Seahurst, Wash.
Use fewer turns on L2 and L4. With C2 set at maximum capacitance, adjust L2 turns and turn spacing so that they resonate at 152 mc as checked with a dip meter. With C7 set at maximum capacitance, adjust L4 turns and turn spacing so that they resonate at 70.6 mc , also as checked with a dip meter. To receive FM signals, adjust C7 slightly off frequency so that slope detection results.

Ask Me Another

More Power

To drive a PM dynamic extension speaker, I built a one-transistor amplifier using the circuit shown in the diagram. The only problem is that it overloads when I turn up the volume. What substitutions or modififications can cure this?
-S. G., Chevy Chase, Md.
Your amplier (A) is obviously incapable of handling sufficient power, particularly when using only a 1.5 -volt battery. You need an amplifier with a considerably higher power output rating. The second circuit (B) shown here should work considerably better.

TV DX?

I would like to pick up TV stations some 200 miles away. Is there any antenna on the market capable of doing this? If so, what is the manufacturer's name?
-W. B. M., Richmond, Ind.
The Winegard Model C-44 is rated at up to 175 miles range. When used with a $30-\mathrm{db}$ (gain) antenna amplifier, and when supported on a mast high enough, it might just do the trick.

Use a Sky Wire

I have a portable transistor radio which employs 12 transistors and 5 diodes. How can I improve its long distance, shortwave capability?
-J.T., Muskegon, Mich.
Connect an outdoor antenna to its whip antenna.

80-meter Problem

How can I convert my shortwave set so I can tune in the 80 -meter band? It now tunes from 6 mc to 18 mc .
-D.C. G.. Greensboro, N.C.
Add turns to the coils. You will need about twice as much inductance. You can get ready made coils such as the Miller 4406 which can be adjusted to vary its inductance from 6.7 to 15 microhenries. Of course, you will limit the tuning range at the high end when you change the coils.

Field Coils are Out

A radio I have has a field coil speaker. Is there any way I can replace it with a PM dynamic speaker?
-D. S., Hanover, Pa.
Use a filter choke in place of a lowresistance field coil, connected as shown in the diagram. The filter-choke inductance value is not critical, but it must be able to handle the receiver's total plate current. A Stancor C-1002, for example, is rated at 15 henries and 75 milliamperes. Some sets used a high-resistance (5 K to 10 K ohms) field coil in parallel to the B-plus supply. It is generally not necessary to substitute a filter choke for this inductance. Many old auto radios do not need the choke eitherit will only use extra battery current since it is connected in parallel to the filaments.

BCB Frequency Meter

How can I get information on a funing meter that reads Kilocycles in the AM broadcast band?
-S. H., Stillwater, Minn.
You can use a BC-221 frequency meter. They are available at military surplus stores for around $\$ 100$. Or, get a calibrated dip meter.
(Coninued on page 28)

SEND CARD FOR RCA'S NEW 1966 HOME STUDY CAREER BOOK TODAY

CUT THE TIME BETWEEN NOW AND SUCCESS

- Find out about RCA Institutes Career Programs.Learn about the amazing "Autotext" programmed instruction methodthe easier way to learn.
Get the facts about the prime quality kits you get at no extra cost.
\square Read about RCA Institutes' Liberal Tuition Plan-the most economical way for you to learn electronics now.
- Discover how RCA Institutes Home Training has helped its students enter profitable electronic careers.
Lots more helpful and interesting facts too! Send postage-paid card for your FREE copy now. Nc obligation. No salesman will call.

350 West 4th Street, New York, N. Y. 10014
The Most Trusted Name in Electronics

Ask Me Another

Continued from page 24

Grounded

I have a shortwave receiver and a 40-meter band dipole antenna, connected as shown in the diagram. AM broadcast stations cover the entire 160 -meter band, except when I disconnect the ground. Is there anyway I can eliminate the BCl without removing the ground.

You've got the antenna hooked up wrong. Connect the dipole transmission line to the " A " and " A " terminal, and remove the shorting bar. Or, if you want more pick up on bands other than 40 -meter, you can add a switch, as shown in the diagram, which will enable you to use the dipole as a "T" antenna. If you have been using coaxial
transmission line, the shield should go to the center " A " connection.

4.5-volt DC Supply

Will you give me a diagram of a 4.5 -volt $D C$ power supply to replace three " D " cells?
-D. R. T., Mayo, Florida
You can use a 6.3 -volt filament transformer and four 750-ma silicon diodes in a full-wave bridge circuit, as shown in the diagram. The value of the filter resistor (R), depends upon the current drain and it affects the output voltage. Try values from 5 to 100 ohms.

Regen Receiver

Can you give me a diagram for a one-tube, AC-powered radio?
-B. W., Petrolia, Ont.

The circuit diagram (bottom of page) is of a regenerative receiver. Coils L1 and L2 can be a Superex No. 11 loopstick, tuned by a 365 mmf capacitor. The regeneration control (C2A, C2B) is a two-gang 365 mmf tuning capacitor with the stators paralleled. To keep cost low, only a filament transformer (T2) is used in the power supply. Lamps II through I4 are GE 1819 28-volt pilot lamps (which fit an S. C. bayonet socket) function as a voltage divider. The output transformer (T1) can be one of the universal type so you can use low impedance earphones (8 ohms). Lamp 15 is a neon bulb which should not light when the set is

and tune the receiver untiJ you pick up your transmitter's signal. You'll hear a whistle which is equal to your transmitter frequency plus or minus the monitor's frequency, when the regeneration control of the code monitor is advanced just beyond the point where is starts to oscillate.

Simple FM Transmitter

Can you give me a circuit for a simple FM transmitter for use as a wireless microphone?

- A. M., Santa Barbara, Calif.

A combination pentode-triode 6EA8 tube can be used. The triode operates as a Hartley oscillator and the pentode as a reactance modulator. See below. Circuit values are shown except for the tank coil. This can be Eico Part Number 36051 available for $\$ 1.74$ from Eico Electronic Instrument Co., Inc., Flushing, N. Y. 11352. Perhaps your Eico distributor can order one for you. Using the coil, the oscillator operates at around 100 mc .

Under Part 15 rules, only a type approved FM transmitter can be used without a station license. For wireless operation, a short piece of wire will suffice as an antenna, connected to one end of L2 with the other end of L2 grounded to the chassis. To use it legally, connect a 62 -ohm resistor across L2 and feed each side of L2 through a 125 -ohm resistor to the 300 -ohm antenna terminals of the FM receiver.

The same circuit can be used as a lowpower FM transmitter in the 2 -meter or 6meter ham band by using a coil that will tune to the band. Since it is not crystal controlled, it cannot be used by a novice ham.
plugged in and connected to a ground. Reverse the AC plug prongs so the lamp does not light. Kcep the regeneration control so that the circuit won't oscillate and cause interference. The set will be most sensitive just below the point where oscillation begins.

Brass Pounder's Tin Ear

How can I build a code monitor for my CW transmitter?
-C. C. S., Valdosta, Ga.
You could build a tone generator and key it at the same time as you key the transmitter, but you would not be hearing your actual signal. Instead, build a regenerative receiver using a circuit like the one shown above. Put it in a metal box so it won't radiate. Use plug-in coils to cover the various bands. Place it near your transmitter

ELECTRONIC PARTS

1. This catalog is so widely used as a reference book, that it's regarded as a standard by people in the electronics industry. Don't you have the latest Allied Radio catalog? The surprising thing is that it's free'
2. The new 510 -page 1966 edition of Lafayette Radio's multi-colored catalog is a perfect buyer's guide for hifiers, experimenters, kit builders, CB'ers and hams. Get your free copy today!
3. We'll exert our influence to get you on the Olson mailing list. This catalog comes out regularly with lots of new and surplus items. If you find your name hidden in the pages. you win $\$ 5$ in free merchandise!
4. Unusual scientific, optical and mathematical values. That's what Edmund Scientific has. War surplus equipment as well as many other hard-10-get items are included in this new 148 -page catalog.
5. Bargains galore, that's what's in store! Poly-Paks Co, will send you their latest eight-page flyer listing the latest in merchandise available, including a giant \$1 special sale.
6. Whether you buy surplus or new. you will be interested in Fair Radio Sales Co.'s latest catalog-chuck full of buys for every experimenter.
7. Want a colorful catalog of goodies? John Meshma, Jr. has one that covers everything from assemblies to zener diodes. Listed are government surplus radio, radar, parts, etc. All at unbelievable prices.
8. Bursiein-Applebee offers a new giant catalog contalning 100 's of big pages crammed with savings including hundreds of bargains on hi-fi kits, power tools, tubes, and parts.
9. Now available from ED) (Electronic Distributors, Inc.) a catalos containing hundreds of electronic ltems. $E D /$ will be happy to place you on their mailing list.
10. VHF listeners will want the latest catalog from Kulin Electronics. All types and forms of complete receivers and converters.
11. No electronics bargain hunter should be caught without the latest copy of Kadio Shack's catalog. Some equipment and kit offers are so low they look like mis-prints. Buying is believing.
12. Unusual surplus and new equipment/parts are priced "way down" in a 32-page flyer from Edlie Electronics. Get one.
13. Transistors Unlimited has a brand new catalog listing hundreds of parts at exceptionally low prices. Don't miss these bargains!

HI-FI/AUDIO

15. A name well-known in audio circles is Acoustic Research. Here's its booklet on the famous AR speakers and the new AR turntable.
16. Garrard has prepared a 32 -page booklet on lis full line of automatic turntables including the Lab 80, the first automatic transcription turntable. Accessories are detailed too.
17. Build your own bass reflex enclosures from fool-proof plans offered by Electro-Voice. At the same time get the specs on EV's solid-state hi-fi line-a new pace setter for the audio industry.
18. Empire Scientific's new 8-page, full color catalog is now available to our readers. Don't miss the sparkling decorating-with-sound ideas. Just circle \#19.
19. A wide variety of loudspeakers and enclosures from Ulah: Electronic:s lists sizes shapes and prices. All types are covered In this heavily illustrated brochure:
20. Need a hi-fi or PA mike? University Sound has an interesting microphone booklet audio fans should read before making a purchase.
21. Always a leader, H. H. Scolf introduces a new concept in stereo console catalogs. "At Home With Stereo" the 1966 guide, offers decorating ideas, a complete explanation of the more technical aspects of stereo consoles, and, of course, the complete new line of Scoff consoles.
22. An assortment of high fidelity components and cabinets are described in the Sherwood brochure. The cabinets can almost be designed to your requirements, as they use modules.
23. Confused about stereo? Want to beat the high cost of hi-fi without compromising on the results? Then you need the new 24 -page catalos by Jensen Mamulacturing.
24. Interested in learning about amplifier specifications as well as what's available in kit and wired form from Acoustech? Then get your copy of Acoustech's 8-page colorful brochure.

TAPE RECORDERS AND TAPE

31. "All the Facts" about Concord Electronics Curporation tape recorders are yours for the asking in a free booklet. Portable battery operated to four-track, fully transistorized stereos cover every recording need.
32. "Everybody's Tape Recording Handbook" is the title of a booklet that Sorkes-Tarzian will send you. It's 24-pages jam-packed with info for the home recording enthusiast. Includes a valuable table of recording times for various tapes.
33. Become the first to learn about Norelco's complete Carry-Corder 150 portable tape recorder outfit. Fourcolor booklet describes this new car-tridge-tape unit.
34. The 1966 line of Sony tape recorders, microphones and accessories is illustrated in a new 16 -page full color booklet just released by Superscope. Inc., exclusive U.S. disiributor.
35. If you are a serious tape audiophile, you will be interested in the new Viking of Minneapolis line-they carty both reel and cartridge recorders you should know about.
36. Sound begins and ends with a Uher tape recorder. Write for this new 20 page catalog showing the entire line of Uher recorders and accessories. How to synchronize your slide projector, execute sound on sound, and many other excluslve features.

HI-FI ACCESSORIES

76. A new voice-activated tape recorder switch is now available from Kinematix. Send for information on this and other exciting products.
77. A 12-page catalog describing the audio accessories that make hi-fi living a bit easier is yours from S witchcraft, Inc. The cables, mike mixers, and junctions are essentials!
78. Swinging to hi-fi stereo headsets? Then get your copy of Superex Electronics' 16 -page catalog featuring a large selection of quality headsets.
79. You can't hear FM stereo unless your FM antenna can pull 'em in. Learn more and discover what's available from Finco's 6-pager "Third Dimensional Sound."

KITS

41. Here's a firm that makes everything from TV kits to a complete line of test equipment. Conar would like to send you their latest catalog-just ask for it.
42. Here's a colorful 108-page catalog containing a wide assortment of electronic kits. You'll find something for any interest, any budget. And Heath Co, will happily send you a copy.
43. A new short-form catalog (pocket size) is yours for the asking from EICO. Includes hi-fi, test gear, CB rigs and amateur equipment-many kits are solid-state projects.

AMATEUR RADIO

46. A long-time builder of ham equipment, Hallicrafters will send you lots of info on the ham, CB and commercial radio-eguipment.

CB-BUSINESS RADIO SHORT-WAVE RADIO

48. Hy-Gain's new CB antenna catalog is packed full of useful information and product data that every CB'er should know about. Get a copy.
49. Want to see the latest in communication receivers? National Radio Co. puts out a line of mighty fine ones and their catalog will tell you all about them.
50. Are you getting all you can from your Citizens Band radio equipment? Amphenol Cadre Industries has a booklet that answers lots of the questions you may have.
51. You can get increased $C B$ range and clarity using the "Cobra" transceiver with speech compressor-receiver sensitivity is excellent. Catalog sheet will be malled by B\&K Division of Dynascan Corporation.
52. A catalog for CB'ers, hams and experimenters, with outstanding values. Terrific buys on Grave Electronics' antennas, mikes and accessories.
90 . If two-way radlo is your meat, send for Pearce-Simpson's new booklet! Its 18 pages cover equipment selection, license application, principles of two-way communications. reception, and installation.
53. Heath Co. has a new 23 -channel all-transistor 5 -watt CB rig at the lowest cost on the market, plus a full line of CB gear. See their new 10 band AM/FM/Shortwave portable and line of shortwave radios. \#93 on the coupon.
54. If a rugged low-cost business/ industrial two-way radio is what you've been looking for. Be sure to send for the brochure on E.F. Johnson Co.'s brand new Messenger "202."
55. If it's a CB product, chances are International Crystal has it listed in their colorful catalog. Whether kit or wired, accessory or test gear, this CB oriented company can be relied on to fill the bill.
56. Sentry Mfg. Co. has some inter esting poop sheets on speech clippers, converters, talk power kits and the like for interested CB'ers, hams and SWL'ers, 100.
57. Squire-Sanders would like you to know about their CB transceivers, the " 23 'er" and the new "SSS." Also, CB accessories that add versatility to their 5 -watters.

SCHOOLS AND EDUCATIONAL

3. Get all the facts on Progressive Edu-Kits Home Radio Course. Build 20 radio and electronic circuitsparts and instructions come with course.
4. Get the low-down on the latest in educational electronic kits from Trans-Teh. Build light dimmers, amplifiers. metronomes, and many more. Trans-Tek hetps you to learn while building.
5. Balley Institute of Technology offers courses in electronics, basic electricity and drafting as well as refrigeration. More information in their informative pamphlet.
6. For a complete rundown on curriculum, lesson outilnes, and full details from a leading electronic school, ask for this brochure from the I/Idiana Home Study Institute.
7. ICS (International Correspondence Schools) offers 236 courses including many in the fields of radio, TV, and electronies. Send for free booklet "It's Your Future."
8. How to get an F.C.C. Ifcense. pius a description of the complete electronic courses offered by Cleveland Institute of Electronics are in their free catalog.
9. Intercontinental Electronics School offers three great courses: stereo radio \& electronics; basic electricity; transistors. They are all described in Inesco's 1966, 16-page booklet.

TOOLS

78. Scrulox square recess screws pose no problems for the serviceman who carries either of Xcelite's two new compact Scrulox screwdriver sets in his pocket or toolbox. Bulletin N 1065 has the details.

ELECTRONIC PRODUCTS

66. Try instant lettering to mark control panels and component parts. Datak's booklets and sample show this easy dry transfer method.
67. If you can use 117 -volts, 60-cyclo nower where no power is available. the Terado Corp. Trav-Electric 50-160 is for you. Specifications are for the asking.
68. "Get the most measurement value per dollar." says Electronics Measurements Corp. Send for their catalog and find out how!
69. How about installing a transistorized electronic ignition system in your current car? AEC Laboratories will mail their brochure giving you speclifications, schematics.

television

70. Heath Co. now has a $19^{\prime \prime}$ and 25" rectangular-tube color TV kit in addition to their highly successful $21^{\prime \prime}$ model. Both sets can be instalied in a wall or cabinet: both are moneysaving musts!
71. Attention. TV servicemen! Barry Electronics "Green Sheet" lists many TV tube, parts, and equipment buys worth while examining. Good values, sensible prices.
72. Get your 1966 catalog of Cisin's TV, radio. and hi-fi service books. Bonus-TV tube substitution guide and trouble-chaser chart is yours for the asking.
73. Install your own TV or FM antenna! Jefferson-King's exclusive free booklet reveals secrets of installation, orientation; how to get IV-FM transmission data.
74. Interesting, helpful brochures describing the TV antenna discovery of the decade-the log periodic antenna for UHF and UHF-TV, and FM stereo. From JFD Electronics Corporation.

Radio-TV Experimenter, Dept. LL-89

505 Park Avenue, Naw York, N. Y. 10022
Please arrange to hove the literature whose numbers 1 have encircled sent to me as soon as possible. I am enclosing 25 (no stamps) to cover handling charges.
\square I am a subscriber
 of booklets requested

	1	2	3	4	5	6	7	8	10	11	12	15	16
Be	19	22	23	24	25	26	27	29	31	32	33	34	35
Sure To													
Enclose	39	41	42	44	46	48	49	50	54	56	59	61	64
$\mathbf{2 5}$	66	67	70	72	73	74	75	76	78	90	91	92	93

NAME (Print clearly)

ADDRESS

CITY

Over-Engineered \& Under-Priced!

This New HEATHKIT ${ }^{\circ}$ Solid-State FM Stereo Receiver Has 5 uv Sensitivity, 30 Watts Music Power, And Costs Just \$99.95*

THE AR-14 AT A GLANCE!

- Advanced 31 transistor, 11 diode circuit - Wideband FM stereo tuner, plus two preamplifiers and two power amplifiers - $\pm 1 \mathrm{db}$ from $15-50,000 \mathrm{cps}$ at 30 watts IHF music power, 20 watts RMS - Handles your records and tapes, stereo or mono; 4, 8 \& 16 ohm speakers - Phase control for 45 db or better separation - Front panel headphone jack - Bookshelf size ... $37 / \mathrm{s}^{\prime \prime}$ H. $\times 151 / 4^{\prime \prime}$ W. $\times 12^{\prime \prime}$ D. - Installs in wall, custom or either Heath cabinet

HOW CAN WE DO IT?

Judging from the high prices on other stereo receivers, you may have a few doubts about a receiver that selis for only $\$ 99.95$. Don't have. Here's why: Famous Heath Know-How has been responsible for the best value in hi-fi since 1949. Our audio engineers use the latest, most sophisticated techniques in the "state of the art." And each new design must survive several stages of rigid performance testing... your assurance that every Heathkit is specification guaranteed. But don't take our word for it. Compare specifications. Read the reviews by hi-fi editors. Ask any Heathkit owner.
You Buy Direct From The Factory . . . no middleman expenses to add to the price. We offer more service than many dealers . . . liberal credit, advice on product selection, and complete servicing. You shop in the comfort of your home, and get delivery right to your front door.

You Build It Yourself in about 20 hours . . . thus labor costs are eliminated. And building it is half the fun. Takes no special skills or knowledge. The tuner "frontend" is already preassembled. Simple step-by-step instructions and large pictorials show you exactly what to do and how to do it. Nothing is left to chance. Get full AR-14 details in the FREE Heathkit Catalog.
Kit AR-14, 17 lbs., less cabinet $\$ 99.95$ AE-55, 6 lbs. walnut veneer cabinet $\$ 9.95$ AE-65, 6 lbs. . . beige steel cabinet. $\$ 3.95$

Also Available As Stereo Separates!

Kit AJ-14, FM/FMX Tuner, 6 Ibs \$49.95* Walnut cab. \$7.95, metal cab. \$3.50. 4 lbs.

Kit AA-14, 30-Watt Amplifier, 11 lbs \$59.95* Walnut cab. $\$ 7.95$, metal cab. $\$ 3.50 .4$ Ibs.
*less cabinet

by Edward A. Morris, WA2VLU
That RF signal isn't any good unless you can hear the audio-compress peaksto increaseaverage modulation.

- If your Ham or CB rig does not seem to be getting out the way you think it should, and your contacts remark that your signal is hard to copy-it could be your modulation! What's the answer? Boost your modulation! How? With this compact 4 -transistor audio compressor!

Even though your modulation meter says that you're hitting at or near 100% on peaks, if you're not using voice compression, your average modulation is likely to be only 35% -some 10 db of audio lower.

The only ways you can boost your signal, to the guys at the other end, are: to use a more powerful transmitter, put up a highgain antenna, or to use voice compression. Obviously the easiest method is to use voice compression.

The voice compressor described here is a small, compact, unit that can be built right into the transmitter or transceiver its to be used with. It's modest cost, less than $\$ 10.00$, won't crimp a small budget. Easy to build, it can be assembled in several hours time.

How it works. The compressor is somewhat unique in its method of operation. That is to say it uses a transistor, Q4, biased so as to act as a variable resistor which shunts part of the output signal to ground whenever the output level rises above a certain value.

Transistors Q1 and Q2 and their associated components form a two-stage com-mon-emitter RC coupled amplifier. Operating bias for Q1 and Q2 is obtained from the voltage dividers formed by resistors R1, R2 and R5, R6. Emitter resistors R3, R7 stabilize the output over a wide range of temperature. Capacitors C3 and C5 bypass the emitter resistors and prevent signal degeneration.

Output from the first stage, developed across the collector-load resistor R4 is fed into the base of Q2 through C4. The output from the amplifier is taken across potentiometer R8 through C6. Note however, that part of the output is coupled into the base of transistor Q3 through capacitor C9 and resistor R10. Resistor R10 limits the signal. Bias for Q3 is set by R12 and potentiometer

RTVE's Audio Compressor

R11, which also serves as the compression control.

The output from Q3 is full-wave rectified by diodes D1, D2, and filtered by capacitor C12.

Bias for transistor Q4 under no signal conditions (that is without someone speaking into the microphone) is set by resistors R14 and R15. This transistor is normally operated close to saturation. Any increase in forward (negative voltage) bias will drive the transistor into saturation. When Q4 saturates, its internal resistance drops. This low AC impedance is shunted across the output of the preamplifier-from the collector-load resistor for Q2, through C13 and C14. These capacitors are connected back-to-back to form a large-value non-polarized capacitor.

So we can see that the greater the input signal level, the deeper into saturation transistor Q4 is forced. As a result, more output signal is shunted to ground. The overall action is to compress the peaks so the output signal remains relativity constant, despite variations in the input-signal level.

Construction. The use of perforated board simplifies the construction. All components are inserted upright, with their leads passing through the holes in the board. Miniature eyelets, inserted in the proper holes, serve to anchor leads and to provide addi-
tional rigidity to the wiring. All capacitors used are miniature types designed for upright mounting. Resistors are mounted on end to conserve space. The general parts layout can be seen in the photographs. All components, except capacitor Cl , are mounted on one side of the board, with the wiring on the reverse side. Do not wire in resistor R 15 at this time-it's exact value for your particular unit will be determined later.

As all components are mounted close together, the pigtail leads on the components themselves can be used as the interconnecting wiring. Use plastic insulation (spaghetti) where necessary to prevent accidental shorts.

Special care must be taken to prevent damage to the transistors and the diodes when soldering them into the circuit. Complete the soldering operation as quickly as possible. The leads are short and a heat sink is not always practical.

When the compressor is completely wired, double check it against the schematic for possible errors.

Whether or not the compressor is built into the transmitter it's to be used with, the compressor must be housed in a metal container. The compressor must be shielded well to prevent feedback. If the compressor is built into a transistorized transmitter, switch S1 and battery B1 may be eliminated. The compressor can be connected to the voltage source in the transmitter making a separate ON-OFF switch unnecessary. The com-

Switch $\mathbf{S 2}$ can be eliminated if you want the Compressor to be in the circuit at all times.

Mounted vertically the components resemble the skyline of a large city. This technique allows more components to be packed into each square inch of perforated board. Wafer-thin C1 is mounted against underside of board.

Depending on transmitter layout the leads for audio signals and DC power may be run through either or both ends of chassis box.

Control shafts for R8 and R11 can be cut short and slotted for screwdriver adjustment to save space required to clear small knobs.

PARTS LIST FOR AUDIO COMPRESSOR

B1-9-12-volt battery isee textl
C1-.001-mf., miniature ceramic capacitor
C2, C3, C4, C5, C9, C12-10-mf., 12 -volt miniature electrolytic capacitor (Lafayette $99 R 6082$ or equiv.l
C6-, O1-mf., minature ceramic capacitor
C7, C8, C11, C13, C14- $50-\mathrm{mf}$., 12 -volt miniature electrolytic capacitor (Lafayette 99R6085, or equiv.l
Cl0-. $05-\mathrm{mf}$., miniature seramic capacitor
D1, D2-Diode, 1 N34, 1 N51, 1 N105, 1 N267, 1N295 or equiv.
Q1, Q2, Q3, Q4-Transistor, pnp, 2N217, 2N320, 2N407, 2N118 or equiv.
R1-15,000-ohms, $1 / 2$-walt resistor
R2- 68,000 -ohms, $1 / 2$-waft resistor
R3- 1,800 -ohms, $1 / 2$-walt resistor
R4-4,700-ohms, $1 / 2$-watt resistor
R5-10,000-ohms, $1 / 2$-watt resistor
R6-56,000-ohms, $1 / 2$-watt resistor
R7-680-ohms, $1 / 2$-watt resistor

R8-5,000-ohm miniature potentiometer ILafayelte 32R7355 or equiv.l
R9-470-ohms, $1 / 2$-walt resistor
R10-27,000-ohms, $1 / 2$-watt resistor
RII- 10,000 -ohms, miniature potentiometer (Lafayette 32 R7356 or equiv.)
R12-100,000-ohms, $1 / 2$-watt resistor
R13, R14-1,000-ohms, $1 / 2$-watt resistor
R15-100,000-ohms, $1 / 2$-watt resistor (see text) R16-22,000-ohms, $1 / 2$-watt resistor
S1-S.p.s.t. switch (see text)
S2-D.p.d.t. switch, miniature toggle (Lafayette 99R6162 or equiv.l
T1-Audio transformer, miniature $10,000-$ ohm primary; 2,000-ohm secondary ILafayette 99R6126 or equiv.)
1-Aluminum chassis box, $31 / 4 \times 2 \frac{1}{6} \times 1 \frac{3}{6}$ inches
Mise.-Solder; eyelets; perforated board; spaghetti; wire; etc.
Estimated Construction Cost: \$8.00
Estimated Construction Time: 6 hours

pressor draws only a few milliamperes.
Initial Adjustment. Once the compressor has been wired and checked for errors, connect a 39,000 -ohm resistor in series with a 250,000 -ohm potentiometer. Wire this combination into the circuit in place of resistor R15. With the output control at mid-position, and the compression control fully counterclockwise, whistle into the microphone and reduce the resistance value to the
potentiometer until the output level fust drops. Remove the combination from the circuit and measure their combined resistance with an ohmmeter. Replace the combination with a resistor which comes the closest to the measured value. Typical values will range from 50,000 ohms to 150,000 ohms, depending upon the individual characteristics of the transistor used for Q 4 .
(Continued on page 68)

expancer

 by Thomas H. ChartersIf you don't own a VTVM you've already moaned over shortcomings of the ohms ranges on your VOM-here's how to add an RX 100 K range.

- If you have tried to measure resistances
- larger than one megohm, you know that it is difficult with a VOM. The scale is crowded in this region and just the thickness of the meter needle represents a large difference in resistance. The Ohmis-Range Expander gets around this problem by adding an extra-high resistance range to your meter making it possible to measure resistances ten times higher than you could before.

Most multimeters have this limitation; it is a compromise that most manufacturers make to eliminate a high-voltage battery. One of the exceptions to this is the line of multimeters made by Triplett which do have a high-resistance range (and a 30 -volt battery.)

The Ohms-range Expander adds a $X 100 \mathrm{~K}$ resistance range to many multimeters including the following: Simpson Models 260 and 270, Heathkit Model MM-I, Eico Models 555 and 565, Knight VOM kit \#83U972MW.

Operation is easy, it can be left connected to the multimeter without interfering with any of the multimeter's other functions, and it is line-operated, eliminating battery replacement.

What Happens. The ohmmeter circuit used by several manufacturers for the $R \times 10 \mathrm{~K}$ range is shown in the diagram. Before measuring the unknown resistance, the leads are shorted together (COM and +) and the potentiometer is adjusted for full-
scale deflection (zero-ohms indication) on the meter. (This adjustment is necessary to take into account aging of the battery.) Then the test leads are connected across the unknown resistance and its value read from the meter scalc. The calibrations on the scale are very unevenly spaced (non-linear) because the relationship between unknown resistance and meter current is nonlinear. The Ohnis-Range Expander makes use of this same scale.

An important question to ask about designing this circuit is, "What value of unknown resistance will cause the meter needle to deflect to half-scale?" The answer is, "A value equal to the total resistance of the meter circuit, in this case 117.7 K plus the parallel combination of $23 \mathrm{~K}, 2 \mathrm{~K}$, and R 3 , or about 120 K total." A glance at the multimeter shows that 120 K is indeed the centerscale value. (Other VOM's may have different center-scale calibrations.) After all, this makes sense because when the leads were shorted, 50 microamps was flowing in the meter. Adding an unknown external resistance equal in value to the ohmmeter circuit's resistance should cut the current in half, giving a center-scale reading.

How it Works. Now we are set to see how the Ohms-Range Expander works. In order to have a $R \times 100 \mathrm{~K}$ range we must have ten times as much resistance in the measuring circuit (so that the center-scale

Bracket (below) holds the calibrating potentiometer R15. Slot is fitted under one test lead jack.

For portable use transformer, rectifier and filter can be replaced with $671 / 2$-volt battery. Rewire S1A into ballery circuit to prevent continuous current drain in normal position.

Basic VOM ohmmeter circuit uses 7.5 -volt battery in high range.

PARTS LIST

C1-8-mf., 250-volt electrolytic capacitor
D1-1N2070 silicon rectifier (Texas Inst.) (400prv, 5 mo or better)
J1-Red banana jack (E. F. Johnson series 108)
J2-Black banana jack (E, F. Johnson Series 108)

P1-Red banana plug (E. F. Johnson series 108)
P2-Black banana plug (E. F. Johnson series 1081
R1-10-ohm, $1 / 4$-watt, resistor
R2- 10 -ohm, $1 / 2$-watt, resistor
R3-18,000-ohm, 1 -watt resistor
R4-15,000-ohm, linear toper potentiometer
R5-15,000-ohm, 1 -watt resistor
reading will be ten times higher. This also means that we must have ten times more voltage, too, because the meter coil still needs 50 microamps before it will deflect full scale for setting zero ohms.

That's all there is to it. To get 10×7.5 volts, the Ohms-Range Expander supplies an additional 67.5 volts which added to the 7.5 volts gives 75 volts. To get $10 \times 120 \mathrm{~K}$, the Ohms-Range Expander supplies 1.08 megohms which adds to the 120 K to give 1.20 megohms. Now, the center-scale reading is 1.20 megohms.

The schematic diagram shows the complete circuit. Some extras have been added. Circuit parts T1, R2, D1, and Cl form a half-wave DC-voltage supply. Resistors R3 and R4 reduce the DC voltage to 67.5 volts across R5. R6 adds to the parallel combination of R3, R4, and R5 to give very nearly

R6-1.07-megohm, $1 / 2$-watt 1% precision resistor (IRC metal-film—Allied Radio 25Z018C)
S1-D.p.d.t. slide switch
S2—Pushbutton switch (Switcheraft type 102)
T1-Power transformer, 117 -valt, primary; $130-$ volt, 20 ma secondary (Stancor 8415)
1 -aluminum chassis box, $4 \times 21 / 4 \times 21 / 4$-inches (Bud CU-2103A)
Misc.-Potentiometer mounfing bracket lsee textl; line cord; rubber feet; strain relief; grommet; heat-shrinkable tubing; terminal strips (see text); spaghetti; mounting hardware; panel lettering; etc.
Estimated construction cost: $\$ 6.00$
Estimated construction time: $\mathbf{4}$ hours
1.08 megohms. R1 acts as a cheap fuse in case T1 should short-circuit. When switch Sl is in the Normal position, the OhmsRange Expander is shut off and the meter leads are connected directly to the meter for normal operation. When S1 is in the $R X 100 \mathrm{~K}$ position, S 2 shorts the multimeter terminals together so that Zero Ohms can be set with the multimeter Ohms-Adjust knob. After the unknown resistor is connected, the read button (S2) is pushed which unshorts the meter giving a reading. The main purpose of $S 2$ is to prevent electrical shorts-it keeps the 67.5 volts from appearing across the meter leads except when a measurement is being made.

Construction: If you want to use the chassis box specified in the parts list, the dimensions given in the drawings work well. The layout is very compact, however, and

For some multimeters (VOM's) you'll need pin tips on the leads instead of the banana plugs shown here.
Since some connections are quite close together it is best to use plastic sleeving (spaghetti) on the longer pigtail leads.

Only thing to watch out for is AC leakage between tie-strip terminals through a buildup of the rosin fux from the solder. This current leakage can add hum to your DC output.
the dimensions should be followed closely. The two terminal strips used (one with a mounting lug and two terminals to the right, the other with a mounting lug and two terminals to the left) were cut from larger strips. The leads to the meter were made from a length of lamp cord. slit three inches from one end, and prevented from separating further by a piece of heat-shrinkable tubing. With some volt-ohm-milliammeters you may have to reverse the connections to the red and black plugs and jacks from those shown in the diagram. To simplify switching these VOM's use reverse polarity to the test leads.

First time Use. Plug the red and black plugs into the plus ($V \Omega A$) and common jacks of the multimeter. Set the multimeter to $R \times 10 K$. Set the Ohms-Range Expander

to Normal. Adjust the multimeter OhmsAdjust knob for a reading of zero ohms. Set the Expander to $X 100 \mathrm{~K}$. With a screwdriver, set R4 so that the multimeter again reads zero ohms (this adjusts the voltage to 67.5 volts and shouldn't have to be touched again unless the line voltage changes). Plug the meter leads into the Expander, connect a resistor, press the Read button, and read.

dial-a-ohm resistance substitution box

 by e. norbert smith wsmpl- As every electronic experimenter knows, a good resistance substitution box is an invaluable aid-a timesaver in breadboard and troubleshooting work. They range in price from less than $\$ 6.00$ on upward-depending upon accuracy, number of resistance values available, and their power capabilities.

There are three commonly used varieties, each with different applications. The simplest circuit is a selector switch (Fig. 1.) which picks one of several different-value resistors, usually ± 10 or $\pm 20 \%$ tolerance for quick substitution in radio and TV repair work. These are inexpensive but have two drawbacks; First only a limited number of resistance values are possible leaving many wide gaps and unless $\pm 1 \%$, or better tolerance, resistors are used they are not too useful when accurate substitution is required..

The second, and most commonly used type, is the resistance decade box which consists of several selector switches, with each selector switch having 10 positions, with 9 resistors, see Fig. 2. For example, a 6 -switch decade would be capable of any resistance value from 1 ohm to 999,999 ohms in increments of 1 ohm . Of course, this unit would be rather expensive. Considering $\pm 1 \%$ resistors at one dollar a piece it will cost (prices vary, of course, with type, manufacturer and power ratings) $\$ 54.00$ plus selector switch, etc. Another disadvantage is when several resistors are added, the tolerance of the larger may override the resistance of the smaller. For example, assume the resistance of 100,000 ohms is selected, the 1% value
of 100,000 is $\pm 1,000$ so the 100 ohms is insignificant.

The third type is more of a novelty but merits attention. The circuit in Fig. 3 illustrates a switching type decade in which only 4 resistors are required per switch. The disadvantage of this type are first, a more expensive switch is required and again the tolerances create a cumulative error overshadowing the smaller values and second if one resistor should become damaged several resistance values would be lost.

A New Approach. A simpler, and quite precise method has been used by the author for some time with excellent results. The circuit in Fig. 4 shows simply two, ten-turn potentiometers (pot) (with calibrated turncounting dials) used as independent substitution resistors. Both are $\pm 3 \%$ accurate with $.25 \%$ linearity. With the turn-counting dials, resolution is accurate to $1 / 1000$ the total value or .1 ohm for the 100 -ohm pot and 100 ohms for the 100 K pot. This would be equivalent to having a decade box with 7 selector switches and 63 precision resistors.

Using the Variable Decade. Connect the variable decade in the circuit being worked with and adjust the knob until the circuit is functioning properly. Then read the calibrated dial. With the 100 -ohm pot each scale division is .1 ohm-each full turn is 10 ohms. The 100 K dial reads 100 ohms for each scale division-10K for each turn.

After reading the resistance indicated on the dials refer to the Standard Value Table, and select the standard value of the desired

tolerance nearest the indicated resistance reading and readjust the variable decade to the standard value you intend using and make certain the circuit still functions properly, if not perhaps a closer tolerance resistor must be used.

As with any substitution box caution must be observed to keep the current to a safe value. Current should not exceed 200 milli-

"ONES" DECADE
"TEN'S" DECADE
Fig. 2. Nine resistors and a single-gang selector switch are needed for a decade.
amperes in the 100 -ohm pot and 200 microamperes in the 100 K pot if you use units identical to those used here. Check the specifications of your units carefully. Some 10 -turn potentiometers have ratings of $11 / 2$ watts-others are rated as 2,3 and 5 watts.

Sometimes wattage, current and voltage ratings conflict-for example you may not be able to get maximum wattage at maximum resistance without exceeding the voltage rating. Check all potentiometer specifications carefully.

Fig. 1. Circuit of resistance substitutor. Fig. 3. (lop, right) Four resistors and a 2-gang switch form one resistance decade. Fig. 4. (above) Potentiometer-type circuit.

Completed unit shows 10 -turn "pots" in a chassis box wired to 5 -way binding posts.

Standard Fixed Resistor Values

20%	10%	5%	20%	10%	5%
10	10	10		33	33
	12	11	33		
	12		39	36	
	13		39		
15	15	15	47	47	47
	18	16			51
	18		56	56	
	20			62	
22	22	22	68	68	68
	27	24			75
	27		82	82	
	30			91	

Higher standard values may be formed by adding zeros up to 22 megohm

Will we be made mincemeat from a pie in the sky?

1

Destruction from Space
 by K.C. Kirkbride

THE MOOD of the city was happy and gay. For the past week, holiday crowds had swarmed into stores, buying food and small luxuries and liquors, all the extras of holiday time. Tailors worked nights to repair men's worn dress-up suits and housewives polished shiny the one- or two-room apartments they called their homes. Young girls and women stood in line at hairdressing shops; while others, not as particular or prosperous, watched TV instructions on how to set their own hair.

All through the city the streets were lined with colored lights, and now the city's people who could not crowd their way into Red Square lined the long cobbled reaches of Gorky Street.

Four abreast, standing in a light, falling snow, atop the balcony of Lenin's tomb, were: Marshall Rodion Y. Malinovsky, Soviet Defense Minister, Raul Castro, Cuban Defense Minister, Dmitri S. Polyansky, Deputy Soviet Premier, First Secretary Leonid I. Brezhov, and Khrushchev's successor, the present Premier, Aleksei N. Kosygin.

It's Holiday Time. To the people lining the streets, this was a festive day, a few hours let-up in a long working year. But to the men atop the stone balcony, grimlipped, severe, the day had deeper, more significant meaning. Now, they awaited the parade that would mark the celebration of the 48 th anniversary of the Bolshevik seizure of power in Russia.

Slowly, somberly, two-hundred-fifty pieces of military hardware rolled over the old cobbled streets into the Square, past the saluting men on the balcony, a military show meant to impress and frighten peoples throughout the world. But reporters at the scene said the first part of the Russian "spectacular"
(Continued Overleaf)
didn't reveal any weapon they hadn't seen before.

The Ultimate. Then a stilled hush fell over the crowd. Wide-eyed and awed, the people watched four huge cumbersome olivedark monsters rumble down Gorky Street into the Square. Even the sight of the menacing missiles sent eerie shivers through the crowd. For before them rolled one of the most ominous weapons man has ever devised, a long-nosed, 115 -foot mass killer that could rain terror on distant cities, a killer that could set whole continents aflame.

Tass, the Russian news agency, dubbed it the longest rocket ever built in Russia, a three-stage, liquid-fuel job, an "orbital missile whose warhead can deliver its blows unexpectedly to the aggressor at the first, or any other loop around the world." Moscow Radio added: "At the very end (of the military show) came the orbital missilestheir very size a striking testimony of their colossal power."

Warning. Only weeks before, military correspondent Paul Roberts, reported in the New York Journal that space circles buzzed with stories the Soviet Union would soon launch into orbit a vehicle of "staggering nature and proportion." Though when he wrote his story, Roberts thought the frightening weapon would be a mammoth space station, in which Russian crew members in a "shirt-sleeve" environment, could whisk round the world in orbit, spying, scouting, or dropping H -bombs at will over Westernworld cities.

Whether the Western world was in for Soviet blackmail by space station or orbital missile, the whole show of Soviet strength echoed Khrushchev's words at the 1962 Geneva Disarmament talks when he warned Russia had developed a missile that would reach the United States from any angle of approach over distances up to 20,000 miles, turning our Early Warning System into a real sharp, eager-beaver Maginot Line.

Reaction. The warning couldn't have been plainer if printed in 92 point Bodoni type. But what was the reaction of the threatened Western world?

Brigadier General Robert Scott (retired) had already said: "We are moving into a time of astro-power. We face a threat beyond imagination. What may come against our beloved America will not be signalled by one light from the North Church steeple, if they come by land, and two, if they come by sea. Never again. They will come through
space, and their light of warning will be the blinding terror of the thermonuclear fireball."

Commander of the United States Air Force Systems, General Bernard A. Schriever added: "Since the Soviet manned orbital flights in 1961, Soviet leaders have boasted they could use their space technology to build 'global rockets' or place 100 megaton bombs in orbit." The General warned the Soviet objective is still world domination, and "for the first time in history, the vast expanse overhead has been penetrated by vehicles we can neither identify nor intercept."

Civilians. But civilian-political reaction differed from military. And somehow the contrast left a foreboding feeling with people who remembered. Hadn't military men warned about Germany, Japan? Hadn't political leaders then scoffed at Mein Kampf? Hadn't they pooh-pooh'd when military officers warned Mitsui Toyama, heading the Black Dragon Society, was infiltrating the

Japanese army, navy, government. And his favorite slogan was "We will attack the two great nations of the world." Meaning then, the United States and Great Britain. But then, as now, political men went about their peacetime business. How could Hitler, a maniac, and Toyama, an idiot, start a war?

But, in the sixties, do our civilian-political leaders follow the same path of tragic error followed in the thirties? In the face of the dread intimidation in Red Square, our Washington political leaders reacted with a fast mental slap on the Russian leaders. They reminded them tartly, but politely, it really wouldn't be cricket to start any old naughty war in space. After all, on October 16, 1963.
hadn't Russia signed a United Nations Agreement that read:
"The General Assembly-solemuly calls on all states: To refrain from placing in orbit around the earth any objects carrying nuclear weapons or any other kind of weapons of mass destruction, installing such weapons on celestial bodies, or stationing such weapons in outer space in any manner."

Clumsy. Three days after the orbital rockets rumbled through Red Square, the Associated Press carried a story saying our authorities in Washington had considered and rejected the idea of building an orbital nuclear missile. The thing was clumsy, probably inaccurate and not quite up to the efficiency of our land-hased and submarinelaunched weapons, the story said.

The men quoted in the story (anonymously) flicked the whole thing off the national lapel by adding that any old warhead that started out in life on any such mission from orbit probably wouldn't make the grade to within, say, 50 miles of target. Compared

to this, our missiles, and submarine Polaris weapons boast an accuracy of one mile off target.

Off Target. But is it possible the "authorities" referred to in the AP story were themselves off target? Noted physicist Ralph Lapp reminds us ICBM bases are vulnerable to enemy attack even though hidden in concrete fortifications underground. The Polaris, though capable of long submerged cruises, could be attacked if new technological methods were developed.

While an orbiting H-bomb has a "maximum of mobility and a minimum of vulnerability." And American technicians are already aware coatings and paint jobs can
make a weapon almost invulnerable to electronic detection. Even more foreboding is the fact the orbital missile does not need to hurl its bombs to the earth. It can detonate a 150 megaton bomb in space, set a whole continent aflame.

Space Weaponry. Probably hard to grasp now by both civilian and political person alike is the severity and startling innovations of space weaponry. Germany's rocket pioneer Professor Germann Oberth proposed some time ago, we develop a "giant mirror in space (some sixty miles in diameter) that could burn any enemy country on earth." Another reputable German scientist working on photon (electromagnetic ray) power as a source of propulsion, say if such power is possible so is a "death ray," a weapon that would burn or melt targets. While our own American scientists have already developed a limited "death ray," a laser "ray gun": that can pierce through metal.

Pearl Harbor from Space. While these weapons are still in the future (we hope!), the orbital missile is admittedly existent, and Western Air Force officers warn a Pearl Harbor from space would microminiaturize the 1941 version. Yet, in face of these warnings and facts, in the face of the knowledge the Russian space effort has been run from the first by the Red Army, our national policy in space remains committed to "peaceful uses."

In his Journal story, Paul Roberts reported our military men are "desperately concerned at the strategic implications in space, believe our "civilian" preoccupation with space travel can hazard our national survival. For the strongest obstacle the United States Air Force has to overcome in its efforts to win go-aheads for even limited efforts to aid national security is the determined dedicated policy of "peaceful purposes" in our space program. Somewhere along the line, the moon caught our eye, and we forgot about survival.

Small Triumphs. True, the Air Force has made small wins. The right to put up Midas, was one. The satellite detective can scout Russian missile bases, watch from high orbit, give 28 minutes warning if a Soviet missile sets out to attack United States cities. The Midas' infra-red electronic sensors track the heat trail of missiles as they launch into space.

The Air Force won the right to put up Samos, too. Samos, an orbiting camera,
(Continued on page 115)

by
 Arnold Marquis

How Tape Saved

 The Voice of an American LegendA time, patience and magnetic recording miracle
If Will Rogers had had his way, you couldn't hear any of his commentaries today. He had little if any interest in recording. He felt that what he had to say was so topical there was no point in preserving it. Thanks to electronics and the modern tape recorder, you can hear his actual voice today, making some of his best commentaries-even though he died before tape recording came into its own.

Will Rogers made a few professional teninch discs, but these were made in the dead silence of primitive studios with none of the crowd reaction of his public appearances. No organized effort was ever made to record him for posterity.

Those commentaries of his that were recorded at all were recorded incidentally. Early recording buffs, sensing his importance, hauled cumbersome electronic equipment to the places he was to speak and recorded his distinctive voice almost against his will. He kidded the microphones and the equipment; or ignored them altogether. Yet, thanks to those far-seeing buffs, his voice
was often picked up at banquets, and in such places as auditoriums, armories, race tracks and theatres.

But when they tried to sell him the recordings they'd made, he kidded them out of it. He never bought one. He was not even interested in hearing them. Yet those commentaries are some of the most important today.

His famous radio programs were recorded for reference only, that is, for protection should there be a lawsuit over something he said. Of course there never was.

No effort was made to collect these recordings during his lifetime. But several years after his death, his family began to gather what recordings they could find, all on dises of some kind scattered all over the country. They found one here, one there, and since there had been little interest in recording what he said, there was no record of who had these disc recordings. By word of mouth, word of the quest filtered across the country, and one lead led to another. Many people who had recordings had long since forgotten them, and had to be reminded.

A little backstage horseplay on a Hollywood movie lot relieves tensions.

Recordings were mouldering in neglect in a hundred places, and a sad lot they were, most of them. Most were covered with dust and dirt. Many were cracked. Some were completely broken. Most were scratched, and pieces of the edges chipped off. Some had obviously been dropped or had heavy objects stored on top of them. Nearly all had been mishandled and abused-particularly those that had been sent to Will Rogers, as these had been taken out of their parcels, and neglected. Almost none (either those the Rogers family had or those in the possession of those who made them) had been protected by jackets. Grime and grit ground into them as they were piled, one upon the other, unprotected, like cord-wood.

And because they were made of many kinds of soft material, they were more than ordinarily vulnerable. Some were on aluminum that had corroded. Others were on a flexible material, similar to vellum, which cracked, warped and tore or were on a sort of coated cardboard which bent and broke. All deteriorated from dampness or dryness.

New Orleans reception was typical of many impromptu recording sessions by buffs.

Will Rogers and friend in Hollywood pose.

While they were being gathered, one of the radio networks took a mild interest in them. But the network decided the discs were hopeless. So, back into the Rogers' vault in Beverly Hills they went, and there they stayed for more years, ignored and neglected.

I learned of the existence of the recordings while, as a writer and producer, I was doing a series of programs for the Rogers Committee on Indian affairs. I was told that one of the networks had rejected the material as hopeless. But having had some previous experience with modern tape recording techniques, I talked to a skilled technician, Joseph Kay, with whom 1 had worked for years at NBC. Together we went to the Rogers vault and surveyed the dilapidated recordings. We could see why they had been rejected.

Kay devised a mechanism for flattening the warped discs. Some of them had virtually to be held together on the turntable to keep them from disintegrating. Then Kay concocted a solution to clean away the corrosion, dust and grime, before starting the long

How Tape Saved The Voice

Between takes of A Connecticut Yankee! "I only know what I read in the papers." The late FDR was introduced by Rogers during the 1932 Presidential Campaign.
and tedious task of restoration. There were so many mishaps, it seemed the recordings could not be saved. But one thing was obvious, it was now or never. If the recordings got any older, they could never be dubbed, recorded onto a new base. Indeed, some were so far gone that in the very process of dubbing they crumbled to pieces.

We dubbed everything simultaneously onto two 30 -ips master tapes. One of these was placed immediately in the Rogers vault. From the other master tape two acetate-base discs were made-one for working purposes the other one also went into the Rogers vault.

One by one the broken, scratched, gouged, grimy recordings were dubbed to tape. A secretary stood by to keep accurate notes on each recording. She noted where the recording had been made; what it was recorded on; who had recorded it; who was on the program besides Will Rogers; the nature of the subject matter; the topics of the day he covered; how long he talked; and any other data we could include.

Rogers never talked long on any subject. Sometimes he delivered just a line or two, like, "Political campaigning is kinda like fishing. You have to go where you can find the fish, and then you have to have the right bait."

Or, "The morning after election people don't come around and say 'Did you conduct a clean and dignified campaign?" No sir. They just come around and say, 'Boy, did you win?" That's politics in a nutshell."

Now the editing started. Aside from the noise and the distortion introduced by the
worn, warped and corroded condition of these original disc recordings, there was the imperfection of the original sound pickup itself. The recordings were full of extraneous sounds, the reverberation of the hollow convention halls, wind blowing, auto horns squawking, locomotive whistles, and the whining and moaning of inaccurate speeds. Most of these ills could never be fixed on discs. But many could be fixed on tape.

In editing (cutting, splicing the tapes), there was the problem not only of matching two different levels, but also of matching two different backgrounds. Some of the extraneous sound were so over-powering that they obliterated words, and sometimes whole sentences, completely. But because we were able to work with tape we were able to save a great deal that would have been lost.

The most tiring task was taking out the clicks from cracked records. Every single click, numbering into the thousands, was clipped out and the cut tape ends matched up. Today there is not a single click in any of the Rogers material.

One by one, as they were edited, the reels were cleaned up, and equalized. Then they were dubbed to 15 ips tapes, and typists transcribed them to text. Since Will Rogers ad libbed, there were no scripts to follow. So the typists, working with head-phones, played the tapes and typed every word, every fluff, every grunt, chuckle and laugh.

When the task was done (it took ten months) copies of these tapes were placed (Continued on page 118)

Neon-Lamp Calculator

By Jack Brayton

Neon glow lamps provide the readout for this desk-top calculator that can be "programmed" to rrultiply, add and subtract.

- Pure fun to build; sure fun to operate, that's the Neon-Lamp Calculator. Its magiclike lamps fascinate not only the builder but everybody else as well. And, if it's left about, somebody is bound to turn the rotary switches, then stare at the lamps which appear to "bounce" across the panel indicateing the sums, differences or products of the switch-selected numbers.

The Neon-Lamp Calculator can add, subtract, or multiply any two numbers properly set on the switches. It's an exciting, visual aid for youngsters learning math tables or as a Science Fair project. But most of all it's just plain gadget-building fun.

How It Works. Be oore we analyze the circuit let's look at the basic addition, subtraction, and multipl cation functions. It's here that the real secret of the Neon-Lamp Calculator lies hidden.

The table shows all possible problem combinations which can exist when any two numbers from 1 through 9 are added, subtracted, or multiplied. What the table doesn't show is the answers-these are dependent on the functions being performed. However, it's important to note that the 2 numbers which make-up the problem are identical for each function. To illustrate, the numbers 7 and 4 can be added, subtracted; or multiplied, but no matter what we do with them, one 7 and one 4 input is

NEON-LAMP CALCULATOR

still required. It's only the answers which are different.

The next thing to notice about the table is that we've divided the inputs or number combinations into 3 groups. In the first group we have the combinations where the first number is larger than the second number. The second group lists the problems where both numbers are identical. And, in the third group the first number is smaller.

Of course, with addition or multiplication the answers to both the problems in the first and third groups are the same. It doesn't matter which number comes first. And, with subtraction, the larger number always comes first unless negative answers are desired. Therefore, if we don't want negative answers we can eliminate the third group entirely and specify that the larger number has to come first. Thus, if the problem reads 1×6 we would automatically change this to 6×1 before solving. And, it's obvious that some types of calculators could be greatly simplified by this arrangement because they would have to handle only a little over half of the input possibilities. This is true of the NeonLamp Calculator and that is why we've designed it so the larger number has to be on S 1 .

About The Circuit. In the schematic dia-

Possible Problem Combinations

Group 1							
S1	S2	S1	S2	S1	S2	S1	S2
2	1	4	2	7	3	7	5
3	1	5	2	8	3	8	5
4	1	6	2	9	3	9	5
5	1	7	2	5	4	7	6
6	1	8	2	6	4	8	6
7	1	9	2	7	4	9	6
8	1	4	3	8	4	8	7
9	1	5	3	9	4	9	7
3	2	6	3	6	5	9	8
Group 2							
1	1	3	3	5	5	7	7
2	2	4	4	6	6	8	8
						9	9
Group 3							
1	2	2	4	3	7	5	7
1	3	2	5	3	8	5	8
1	4	2	6	3	9	5	9
1	5	2	7	4	5	6	7
1	6	2	8	4	6	6	8
1	7	2	9	4	7	6	9
1	8	3	4	4	8	7	8
1	9	3	5	4	9	7	9
2	3	3	6	5	6	8	9

gram the AC-line voltage is applied to the calculator circuitry through T1—an isolation transformer which provides approximately the same voltage at its secondary as is applied across its primary. This transformer eliminates the shock hazard which would be present if the line was connected directly.

The secondary voltage of T1 is, of course, present at the rotors of the switches (through S3 and RI). R1 limits the lamp current.

Looking at the circuit, we can see that the rotor of SI connects to the horizontal and S 2 to the vertical bus-wires. Thus, for any combination of switch settings one horizontal wire is connected to one side of TI (through R 1) and one verrical wire is connected to the other side. Thus, there's a 110 -volt difference of potential between the two wires. And, where they cross, there's a neon lamp. This lamp, of course, lights. It's important to note that only one lamp is connected to the AC voltage for any switch setting.

A small filament transformer (6.3 volts, at .6 amp is more than enough) can be used to light up \#47 pilot lamps if greater brilliance is needed for visual-aid displays. Replace R1 with a 7 to 10 ohm resistor to prolong the life of the pilot lamps if they are left burning for long periods or install a momentarycontact pushbutton. Connections can be soldered right to the lamp base-first solder the bottom bus wire to the shell then solder the top bus wire to the tip contact. You won't damage the lamps if you are careful and used tinned wire for all connections.

To illustrate, let's assume switch $S 1$ is set at 7 and S2 at 4. Tracing the \#4 (vertical) wire and the \#7 (horizontal) wire to where they cross we find there's a neon lamp (marked with an asterisk (*) in the schematic). This lamp lights-it's the only lamp connected to both of these wires. Therefore, it's the only one which can fire. Of course, there are no lamps for settings where Sl's number is smaller than that of S2. This would require 36 additional lamps and isn't necessary for the reasons stated earlier.

Since we now have a circuit which will light a different lamp for each input-problem combination all we have to do is mark the lamps with the proper answers. But since the answers for each of the functions (multiplication, addition, and subtraction) are different 3 sets of answers are required.

With the Neon-Lamp Calculator we accomplish this simply by using 3 interchangeable front panels-one for each function. The panels fit over the tips of the lamps and

Wiring of Calculator is quite simple. The ten lamps of Circuit \#2 are physically fitted into the vacant triangle in the lower-right corner of Circuit \#1. 53 can be replaced with a pushbutton or eliminated since the NC positions of S 1 and 52 have the same effect. For a much brighter display use 6 -volf pilot lamps-replace II with 6.3 -volt filament transformer and eliminate R1. $\$ 3$ should be a momentary contact pushbutton to give long life to pilot lamps.
are supported by; but not attached to; the $1 / 4$-inch threaded spacers which act as mounting studs. The panels are held only by their weight and can be readily changed.
Although they are not separate circuits part of the schematic diagran is labled "Circuit \#1" and part "Circuit \#2". The reason for this is simply that the lamps do not fit on the panel in the triangle shape they form on the schematic. They are mounted in a square to conserve space. Therefore, physically, we've placed Circuit \#2 in the corner of Circuit \# 1 where there are no lamps.

Parts. Most of the parts used in the Neon-Lamp Calculator can be obtained from any electronic supply house. However, the

PARTS LIST FOR NEON-LAMP CALCULATOR

R1-82,000-ohms, 1-watl resistor
51, 52-12-position, single-deck, non-shorling rotary switch (Mallory 32112J or equiv.) S3-S.p.s.t. toggle switch
T1—Power/Isolation transformer; 117-volt primary, 105 -volt secondary ILafayette 33 R 7502 or equiv.)
1-Aluminum cabinet (Bud AC1613 or equiv.)
2-Dial plates, $1-9$ markings iMallory 379 or quiv.)
45-Neon lomps, type NE-2
Perforated circuit board, $3^{21 / 32}$ by $63 / 4$-inches, unctad (Lafayette 19 R 3606 or equiv.)
Misc.-Flea clips; machine screws; nuts; washers; grommets ($3 / 10$ inside diameler); hookup wire; solder; etc.

Estimated cost: \$14
Estimated construction time: 7 hours

0	4	3	2	1	0	0	1	2	4	0
	5	4	3	2	1	0	0	1	2	
	0	0	0	0	0	0	0	0	0	
	6	5	4	3	2	1	0	0	1	
	7	6	5	4	3	2	1	0	0	
	8	0	0	0	0	0	0	0	0	
	8	6	6	5	4	3	2	1	0	
0	sUBTRACTION									

Three identically-drilled front panels are numbered differently to give the correct answers for the three Calculator functions.

NEON-LAMP CALCULATOR

perforated board, flea clips, and isolation transformer are Lafayette items and can be obtained from them. The perforated board is a stock size ($321 / 32 \times 63 / 4$ inches) and only one edge has to be cut. The three interchangeable panels can be made from aluminum, pressed board, phenolic, etc.

Construction. The first step in building a Neon-Lamp Calculator is laying out and cutting the perforated board. The holes at the line junctions are neon lamp centers.

Now, cut the three interchangeable panels to an identical size. Then take a sheet of paper (same size) and tape it to the back of the board. Using a sharp pencil, mark boih the mounting and lamp hole centers on the paper. Transfer the paper to the cabinet, square it, and center punch all of the holes. Then tape the paper to each of the panels but mark only the 4 corner-mounting holes. Make a scratch (in approximately the same location) on the back of each panel. Later, this mark will tell you which way they were drilled (the holes may match in one position but not in the other).

Drilling. The easiest way to make sure all of the lamp holes match is to drill the initial center holes at the same time. This can be accomplished in the following manner.

First-using a $/ 64$-inch (.1406) bit drill the 4 corner mounting holes in the perforated board; cabinet top; and each panel. These should be drilled separately. Next take a piece of scrap wood and cut it to about the

It's a simple matter to lift off the panel and drop a new one in place to subtract, add.
same size as the panels. The 3 panels and circuit board are attached to the cabinet and the wood is used as backing. The perforated board should be on top of the cabinet with the markings facing out and the 3 panels should be underneath with their backs (marked earlier) facing down. 6-32 machine screws or wood screws in the mounfing holes will hold the pieces firmly. Be certain the panel marks are in the same position and that the board holes match those center punched on the cabinet earlier, then drill the lamp holes using a $\%$ (1-inch bit.

Remove the 3 panels and replace the (Continued on page 91)

Phenolic perforated board layout shows jumpers used to connect Circuit \# I to the corresponding bus bars of Circuit \#2. This layout condenses the circuit without making wiring difficult. Leads to selector-switch terminals are numbered for their knob and dial-plate position on front panel.

HWMLABCHECK

LAFAYETTE MODEL HA-520
Dual-Band VHF
FM Communications Receiver

- In the past, the wide frequency ratio between the $30-50 \mathrm{mc}$. and $152-174 \mathrm{mc}$. "utility" ("public service") bands was too great for single receiver coverage, and the SWL interested in getting full coverage had to purchase two receivers. Since the assignnients to these bands overlap-for example, the New York City Police uses the high band while their next door neighbors in Nassau County uses low band-the SWL with one receiver missed half the fun.

Yet the only difference between high and low band receivers is the front end; the SWL with two receivers has paid for an extra IF strip, audio amplifier, speaker, power supply and cabinet which he doesn't need.

Lafayette Radio's HA-520 Dual-Band VHF Communications Receiver does what should have been done years ago, it resolves the two-of-everything problem by doing the obvious thing-it combines two front ends in a single receiver at a substantial savings to the user. As example, two separate receivers, one for the high band and one for the low, would cost nearly $\$ 120$, yet the HA-520, which is essentially identical to the two separate receivers costs but $\$ 89.95$-a savings of $\$ 30$.

How It's Done. To obtain maximum performance on the high band the front ends are completely separate-not bandswitched in the sense that only coils are changed; and each has its own separate antenna input.

While a single antenna could be connected to both front ends, separate terminals are provided for each band allowing connection of antennas individually tuned for each band. Each antenna connects directly to its own front end-there is no antenna switching. Only the relatively low frequency output of the high and low band mixers- 10.7 mc.-is switched. The mixers feed a three stage IF amplifier, one of which is a limiter, and on into a ratio detector. No AM detector is provided, the HA-520 is FM only.
rest Results. The circuit line-up of one stage of single tuned RF and three stages of IF amplification results in rather good per-formance-particularly when the less than $\$ 100$ price is considered. While the receiver is rated for a 3 uv. sensitivity we found it applied to the low band; the high band was about 8 uv., still a respectable figure. Selectivity is notably good, as attested by freedom from adjacent channel interference on the low end of the high band, which is as packed with signals in the New York City area as the 11 -meter CB band.

Audio quality is excelient, a very crisp sound with very low distortion. Of unusual interest is the fact that even with the volume control wide-open on strong signals there was no tendency for the speaker's vibrations to cause microphonic howling.

The squelch is neither good nor bad-actually, we've seen better. I he squelch circuit

LABCHECK

> Shock-mounting for dual front-ends and speaker reduce the possibility of mechanical feedback causing the audio to howl when set for high volume.

uses the negative voltage developed by the limiter IF amplifier to release the first audio amplifier. Obviously, if the received signal is not strong enough to develop grid voltage on the limiter there will be no squeich release. Under low atmospheric noise conditions the squeich released about 6 db above the minimum usable signal strength. In practical terms, this means the "utility band DX'er" must turn the squelch off in order to hear signals coming in just over the noise level. In normal communications use no one is going to bother with signals that weak and the squelch is adequate. Notably, the receiver's noise limiting is good and we did not experience false tripping of the squelch by ignition and atmospheric noises.

The HA-520's overall construction appears to be rugged, and we estimate that even severe handling or bouncing will not adversely affect performance.

Special DX'ers Note. While the HA-520 has separate antenna terminals for each front end the internal wiring lends itself to single antenna operation. The bandswitch, which selects the appropriate front end, also discon-
nects the antenna not in use. Therefore, if the two antenna inputs are shorted together and a single antenna is used at no time will one front end connection load down the other. While the instruction manual does not cover this point we feel it was the circuit designer's original intention to permit a single wire to serve as an antenna for both bands. We tried it out and it works just fine. Though, of course, optimum reception is obtained from separate, outdoor, tuned antennas.

Allowing for its rather good overall performance, good frequency stability after a short warm-up and ruggedized construction we feel the HA-520 is useful not only for the hobbyist and SWL but for professional communications use, such as by volunteer fire departments and "newshawks" (with an AC inverter it will work great in a car).

While the HA-520 is priced at $\$ 89.95$ and a dual band antenna is an additional $\$ 19.95$, they are available as a "package deal" for $\$ 99.95$. For additional information write to Department KCP, Lafayette Radio, 111 Jericho Tpk., Syosset, N. Y. 11791.

> Block diagram shows the switching of antenna and If amplifier for dual-band reception.

We'll give you a guarantee: Use our Photo-Trol to balance the lighting for your home movies, family stills, or portraits, and your results can be as good as Hollywood or the local pro. If not, tear off the top of your local newsstand dealer and throw it into a mailbox.

Seriously, the secret to good pictures is in the lighting, and as any pro will tell you, good lighting can compensate for virtually any defect; it can even change a sow's ear into a silk purse (contrary to what they teach in school). But while the pros have almost unlimited lighting controls most amateurs are relegated, even by the so-called lighting mantrals, to pushing a few photofloods around the room and hoping for the best.

But really fine lighting is obtained by balancing the lights, not by pushing them up, down and sideways. And right now, the only device available to the amateur photographer which can balance photo lights is our PhotoTrol, which can adjust photographic flood lights (or any other incandescent light for that matter) from a dim glow to full brilliance. In addition, since the Photo-Trol turns on the lights with reduced power, you can get up to six times the normal life from each set of floods.

Why Photo-Trol Is Better. While the Photo-Trol uses an SCR (silicon controlled rectifier) it is unlike the other so-called lighting controls which are really motor speed controls. Motor speed controls are half wave devices, they can only vary the lighting from zero to about 70 percent of maximum brilliance. To get full brilliance the motor control must have a separate switch which bypasses the control and applies full power to the lamps. Further, the adjustment range of the motor speed controls is very narrow and a very slight adjustment of the knob makes the light jump from minimun to maximum almost instantly; not to forget of course that motor controls cause the lamps to pulsate when set to very low light levels.

On the other hand the Photo-Trol uses a full wave SCR (called a Triac) which allows the light to be adjusted smoothly over the entire control range from a dim, barely discernible glow, to maximum brilliance, with no sudden switching jump from 70 percent to full brilliance.

The unit shown will handle two circuits, as most amateur photographers desire control over only two lights. However, you may place more than one light on each circuit or use a larger cabinet and build in three or

PHOTO. TROL

The Shutterbug's Variac

By
Herb Friedman
W2ZLF/KB19457

The right balance of light and shadow is the secret of any great work of art; it's also the secret of excellent photography

Potentiometers R2 and R4 contain integral switches 51 and S2. Rotate the pots until the switches click on; at this point, lamps will be about 50 -percent brilliance. Then the pots can be rotated to give full brilliance or soft glow.

more circuits. With the components specified each circuit will carry a maximum of 6 amperes or 700 watts. Up to 1200 watts can be carried by each circuit if type SC46B Triacs are substituted for specified SC41Bs.

Construction. The Photo-Trol is built on the main section of an aluminum chassis box approximately $21 / 8 \times 3 \times 51 / 4$ inches. The specified SCR's do not have a mounting lug nor do they require a separate heat sink; they are epoxy cemented directly to the cabinetthe cabinet provides the heat sink. First, drill the cabinet for all the major components. Temporarily mount the potentiometers, fuse holders and sockets and then mark the positions for the SCR's; position the SCR's so they are not too close to other major com-ponents-then remove the components.

Mount the SCR's in the following manner. Place a very thin piece of tape such as cellophane tape or the plastic electrical tape on the cabinet-the tape should be no larger

As shown above left, the chassis box comfortably houses all components of the PhotoTrol. At the right, epoxy cement is being applied to SCR1; when cement hardens, mount major components. As shown below, the unit can be easily mounted right on your tripod.

> Schematic diagram of the Photo-Trol shows the double circuif-section 1 and section 2-for control of two sets of lights. Each section is rated at 6 amperes or 700 watts. Details for increasing the power capacity are given in text. Use of plug PI on the chassis box allows the box to be mounted on your tripod with no permanently attached external power cables to get in your way.
than the base of the SCR; it is only an insulator. Apply a liberal quantity of two-tube or hot epoxy cement to the SCR base and place the SCR over the tape. Using a toothpick, or similar item, pack epoxy all around the base of the SCR at the chassis junction. When the epoxy hardens the SCR will be insulated from and bonded to the cabinetwith the cabinet being the heat sink. Then mount the major components.

The SCR case itself is the second anode (A2) connection. Thoroughly clean a small section of the case, preferably with sandpaper, and using a soldering iron rated 100 watts or less, tin the SCR. If possible, use a very thin or low temperature solder. Make the connection fast; avoid applying heat for an extended period to the SCR. When installing DI use a heat sink on the leads.

Fuses F1 and F2 should be rated no higher than the maximum SCR rating; 6 amps for the specified type (SC41B), 10 amps for the optional type (SC46B). Use standard 3AG fuses, not slo-hlow. Miniature glass circuit breakers can be used if they're fast-acting.

The 3 -prong power input, PI, is just a convenience, a power cord connected directly can be used. However, regardless of the power connection the leads should be \#16 minimum, not \# 18 zip cord. Similarly, all leads connecting to the Triac's anode "cathode" (actually the first anode, A1) should be at least \#16 or heavier.

Using the Photo-Trol. Connect the power to P1 and the photofloods to X1 and X2. Rotate either R2 or R4 just past the point where the power switch clicks in. Keep advancing

PARTS LIST

C1, C2-.1-mf., 200-VDC mylar paper capacitor (or equiv.)
D1, D2-Diac type ST2 (GE)
F1, F2-6-amp., 3AG-size fuse (See texi)
PI-AC 3-wire plug for retainer-ring mounting (Amphenol 61-M or equiv.)
R1, R3-4,700-ohm, $1 / 2$-wath resisfor
R2. R4-250,000-ohm linear potentiometer with s.p.d.f. switch
S1, 52-S.p.d.t. switch, part of potentiometers R2, R4
SCR1, SCR2-Triac Type SC41B, 6 amps., (GE) (See fext)
1 -Aluminum chassis box, $21 / 8 \times 3 \times 51 / 4-$ inches (Bud 2106A or equiv.)
Misc.-Fuse holders (2), epoxy cement, line cord, \# 16 wire, solder, hardware, elc.
Estimated cost: \$18.00
Estimated construction time: 2 hours (not including opoxy curing time)
the control until the lamp suddenly goes onthe lamp-on point is at about 50 percent brilliance. Once the lamp is on R2 or R4 can be backed-off, reducing the brilliance to a dull glow, or full-off; or, the control can be advanced until the lamp is full on. In short, the controls have a "backlash" in that the lamp must go on first at about 50 percent brilliance before it can be dimmed to a glow.

There are no precautions necessary in the Photo-Trol's operation. The lamps can be controlled at light level or "snapped open" to full brilliance instantly. A singing sound from either the Triacs or lamps is normal (caused by the current pulses at reduced light level) and should not be a cause for concern. Now get out there, tiger, and snap away with the ol' Brownie like the Pros.

Computer Talk
 By Walt Miller

"I see Ed Chambers is back!"

". . . so much for Nevada. Let's check the demand for pearl-handled putty knives in Idaho."

"You'll never guess how I found the solution to that problem."

"It's almost humanl":

FREE CATALOG. 250 "Do-lt-Yourself" Electronic Kits At Up To 50\% Savings

 WHY BUILD HEATHKIT ELECTRONICS? A desire for top-quality products at 50% savings, to be sure. But it goes beyond that. The reason people choose Heathkit is pride. Not just the pride of owníng something new, but something a bit better that you have created yourself! From watching your Heathkit grow and take shape from your own efforts. It's a labor of love and a lot of fun. The large pictorial diagrams and simple, step-by-step instructions make it easy. And when you finish and turn it on you'll know that unique self-satisfaction that comes with "do-it-yourself." You will have joined the millions of people, from ages 11 to 79, people with no special electronic skills or knowledge, who successfully build Heathkits. People like you! Give it a try. Your FREE Heathkit catalog is waiting for you now.

World's Largest Selection Of Electronic Kits

NEW Low Price On Heathkit 21" Color TV . . . Only $\$ 375.00$

NEW Transistor FM Stereo Tuner That Assembles In 6 Hours Or Less . . . Only $\$ 49.95$

NEW Deluxe Shortwave Radio . . . Only $\$ 84.95$

NEW 23-Channel, 5-Watt All-Transistor CB Transceiver... Only $\$ 89.95$
\star See The Vast Selection Of Portable And Table Model AM, FM and Shortwave Radios
\star See The Famous Heathkit/Thomas Transistor Electronic Organs
\star See A Complete Selection Of Home \& Hobby Items . . . Intercoms, Garage Door Opener, Automotive Kits, Tools, Color TV Sets

* See All Heathkit Stereo/Hi-Fi Components Tuners, Amplifiers, Speakers, Turntables, Cartridges, Furniture
* See The Full Complement Of Heath Marine Electronics
* See The Complete Line Of Citizen's Band Radio Gear...Transceivers, Walkie-Talkies, Accessories
* See The Wide Selection Of Heath Educational Kits For Home Or Classroom Study
\star See The World's Largest Line Of Amateur Radio Gear
* See The Full Line Of Heathkit Lab \& Test Instruments For Home Workshop, Industrial \& Educational Use

JOIN A RADIO CLUB

By Tom Kneitel, Master SWL'er

Don't be a loner-tie up with a short-wave listening fraternity!

\square Want to get the most from your hobby? If you're a Ham operator, join the American Radio Relay League. If you're a racing fan, join the Sports Car Club of America. If you're interested in DX'ing, join a DX club -any one of the many such clubs which happens to suit your particular DX appetite.

You mean, you never heard of DX clubs? Shame on you, no self-respecting listener would dare touch his tuning capacitor unless he was affiliated with one or two DX clubs.

These clubs publish detailed bulletins and newsletters for their members-some are as thick as 50 pages per month! Typical contents of a club bulletin include reception reports from members, data on new stations, QSL information, lists of members who wish to swap QSL cards or recording tapes, and shack descriptions.

The main problem in joining a DX club is getting a hold on one which is here to stay-oh yes, they have been known to come and go from time to time. Some clubs start up with a really great burst of enthusiasm and are little more than a memory by the third edition of their monthly bulletin. Other clubs do really well until the one or two fellows who turn out the newspaper tire of their work and can't find a replacement edi-
tor. Elections kill some clubs, lack of new members kill others.

We have screened through a number of clubs and came up with a summary of the current crop of clubs-the ones which seem to be making the grade on a rather permanent basis (one of these clubs has been going strong since 1927). In addition to the listing, we are presenting a "universal" membership application which may be used when contacting any of these clubs; just complete the form and send it in with your first year's dues.

If you aren't certain which club is the one for you, just about all of these clubs will send you a sample copy of their current newspaper, all they ask is that you send along some postage (about 25 ¢). They are all nonprofit groups and try hard to scrape through "in the black" at the end of the year.

When writing, please be certain to mention Radio-TV Experimenter.

American SWL Club, \% Gerry Klinck, 223 Potters Road, Buffalo, N.Y. 14220. Dues are $\$ 3$ per year in this well established DX club. They publish a 30 -page bulletin each month which covers all phases of DX'ing. The club has a large number of awards
(Continued on page 116)

DX CLUB MEMBERSHIP APPLICATION

To_Club	
Please enroll me in your organization. I am an active DX enthusiast.	
My interest lies primarily in the following aspects of $D X$	
My age is: \qquad I have been receiving equipment: \qquad	'ing since: \qquad I have the following
If I am accepted for membership, cause of good DX'ing.	endeavor to make every effort to further the
	Signed:
	Name:
I am enclosing \$ \qquad dues. (Please use check or money order)	Address:
	City :
RADIO-TV EXPERIMENTER	State: \longrightarrow Zip:

[^1]State:
Zip:

Your finger is the key to this lock. Just memorize a few numbers-twirl the dial-press a button-and you're in!

- You don't need a key for this lock. To open it just dial a few numbers. It's as easy as dialing your telephone. In fact the Electronic Dial-Lock is built around two telephone components. One is a telephone dial mechanism, just like the one on the telephone that you use to dial your party. The other telephone component is a 2 -circuit, 44 -position stepping relay.

The Circuit. The Electronic Dial-Lock is very simple to operate. Just flip a switch and dial a few numbers. Pesto, like magic, the door latch buzzes and the door is unlocked.

The stepping relay will select the correct contact position while you are twirling the telephone-dial assembly. For instance, dial seven, and the stepping relay steps off seven contact points.

A 12 -volt DC power supply must be constructed for the stepping relay. The AC voltage from a 12 -volt filament transformer is rectified by a 2 -ampere silicon diode ($a 6$-volt filament transformer and a voltage-doubler rectifier can also be used-Editor). The DC output is filtered with a $1000-\mathrm{mf}$ electrolytic capacitor. The rectified DC output is 20 volts without a load. When the solenoid load of K1 is connected across the power supply (when the switch contacts of the dial mechanism close) the voltage goes down to 15 volts.

A latching relay (K2) was inserted into the circuit to make the stepping relay (K1) pick out two numbers, instead of just one, as it goes through the 88 contacts (instead of just 44). The latching relay cuts down the possibility of anyone finding the com-

THE ELECTRONIC DIAL-LOCK

Simplified version of the lock is mounted in partition along side of workshop door.
bination just by chance since two definite numbers must be dialed to unlock the door. Of course, the latching relay can be eliminated to reduce the construction cost-and the numbers to be dialed will be reduced to only 44.

With the latching relay in the circuit the problems of finding the "lucky" numbers are doubled. Of course most locks can be "picked" by the professionals. Yet, for limited-access use the Electronic Dial-Lock will serve to keep out "honest" people. The lock is not fool-proof since the combination can be found by triggering the stepping relay one step at a time. To prevent this a push-button (S4) was added along with the alarm bell.

All the contacts in Row 4 are wired together except the one which is connected to

HOOK DIAL ASSEMBLY CONNECTIONS TO 1-4

Rearview of dial shows the few components that make up this pulsing-switch assembly.
the door latch (through S4). If the wrong contact is selected by the wiper arm for row 4 the alarm bell will ring when the pushbutton is pressed. If the correct contact has been dialed the door latch will buzz and the door may be opened.

Actually several latching relays can be connected into the circuit-each one being energized by a particular contact on the stepping relay. You can even increase the number of usable contacts by connecting the coil of one latching relay through the contacts of another latching relay. For example, by using these latching relays you can increase the effective number of contacts to almost three times 88 . In the alternate latch-ing-relay circuit, dialing 40 pulses closes K2; dialing 78 more pulses-back to contact 30 closes K3; dialing 76 more pulses closes K4 and 65 more pulses brings you to contact 83 completing the circuit through pushbutton S4. Of course dialing almost 260 pulses will

This alternate latching-relay circuit can be carried out still further by adding even more relays. Complex contact combinations can be made with just a little time for experimenting.

take some time dialing to hit the number just by chance. Anyhow, you can see how extra latching relays can increase the security.

Large-value capacitors across 6 -volt DC latching-relay coils with series dropping resistors to the 12 -voit DC supply will prevent the latching relays from pulling in rapidly and a very definite pause must be made at each number before the relay will pull in. The dropping resistor should drop 6 voltsthe capacitance of the electrolytic across the 6 -volt relay coil will determine the length of time you must pause at the number dialed before the latching relay will pull in.

Other circuit components are a start light, start/operate switch and the nagnetic door latch. The start light only comes on when the starting switch is in either the start or operate positions and the row I wiper arm is on contact 1. The magnetic
door latch will energize only when the latching relay(s) are energized and the wiper arm for Row 4 is on the proper contact when pushbutton S 4 is pressed-the alarm bell will sound if the wiper arm is on any of the other contacts.

Operation. To unlock the door a combination of numbers are dialed. The stepping relay will follow the pulses from the contacts of the dial assembly. The two wiper blades of the stepping relay sweep through the 88 contacts of the four rows. To one contact in row 2 we have connected a latching relay that pulls in when this contact is made and is "latched" by its own holding contacts which keep the coil energized until the fourth row wiper arm can make contact (or the start/operate switch is set to the off or Start positions). In row 4 you wire one contact to the magnetic door-latch circuit.

PARTS LIST FOR ELECTRONIC DIAL-LOCK

C1-1000-mf., 16 -voll electrolytic capacitor IGeneral Eiectric XC1-26; Lafayette 34R5517 or equiv.l
D1-2-ampere, 50 -volt pry silicon diode 1 Lafayefte 19R5007, or equiv.l
ll-Pilot lomp, type 47
12-Bell, 12-volt
K1-Stepping relay, 2 -circuit, 44 contact 101 son SW327 or equiv.।
K2-Latching relay, d.p.d.t. 12-volts, 60-cycle AC IPotter-Brumfleld KAllAY; Guardian, 200-12 A coil, 200-2 contacts or equiv.l
K3—Door latch, magnetic $6-8$ volts, 60 eycle AC

Sl-D.p.d.t. toggle switch (center OFF) (Lafayette 99R6148 or equiv.)
S2-S.p.s.t. pushbution (remote door open) single door-bell button
S3—Dial assembly (Olson Electronics PH41 or equiv.l
S4-D.p.s.f. pushbutton (Mallory 1014 or equiv.)
T1-12-6-volts centertapped 2-ampere flament transformer (Lafayetfe 33R8119 or equiv.)

Estimated construction cost: \$25.00
Estimated construction time: 5 hours

THE ELECTRONIC DIAL-LOCK

Above, thumb points to adjusting serew-it lengthens or shortens stroke of stepping relay action should KI miss a step or two. Rearview of Electronic Dial-Lock (right) shows the locations of major components. The power supply is built as a separate unit.

The door latch is energized and lets the door open when the wiper contact lands on the correctly dialed number.

To start the operation of the basic Electronic Dial-Lock, flip Si to the start position. Now dial 1 again and again until the start light comes on. The wiper arm is now on the start contact in row 1. To get the wiper arm to go through the first row of contacts the numbers dialed must equal the remaining number of contacts in that row. Since the first contact in Row 1 is the start contact dialing 22 pulses will bring the wiper arm to the first contact in Row 2.

Let's use 778 as the first three numbers (we could use 944,679 or any other three numbers that add up to 22). Now before the latching relay (K2) can be energized through its contact in row 2, we'll have to dial a couple more numbers. Let's dial 9. This number plus the next number dialed will bring the stepping relay wiper to the latching relay connection and the latching-relay contacts will close.

For example, assume that we have placed the latching-relay connection on contact number 19 in row 2. This is the fourth contact from the end of rotation.

The latching relay connections can be placed anywhere on Row 2. But it is best to keep the connection toward the end of the row so that more numbers will need to be dialed before the relay energizes. This also adds to the dial-switching confusion for anyone trying to open the lock without knowing the correct numbers.

Dial 9 again and the stepping relay stops at terminal 19 of row 2. Up to now we have

dialed 778-99 for a total of 40 contacts after the Start contact in row 1; the wiper arm is on the latching-relay contact.

There are no connections to the contacts on row 3 so we can go through most of this row rather quickly by dialing 0 twiceactually 20 pulses and 20 contacts on the stepping relay.

After dialing 778-9900 we are near the end of row 3, but if we don't want to dial two more numbers we must keep the hookup point in front of contact 5 on row 4. Let's put the door latch connection to contact number 4. Now, just dial 9, press S4, the latch buzzes and the door can be opened.

If the stepping-relay wiper arm goes beyond contact 4 the magnetic door latch would click or give a quick buzz as the wiping contact goes by if pushbutton S4 wasn't in the circuit.

You must find the correct combination of numbers so the stepping relay will stop at the right contact-not one for the alarm bell. You may want to use your own telephone number, but to get past the sum of 60 pulses you may have to add a number or two. In our number 778-99009 we have a total of 69 pulses to step the relay K1.

Fewer Numbers. To make the lock quicker to open you can leave out the added safety of the latching relay. Not only will this bring the cost of the project down it will make the combination of numbers to open the lock easier. If you leave out the latching relay (K2) place the connection to the magnetic door latch to the contact where the relay should be connected. You can place the magnetic door latch on any connection

> Make all your tests before installing Dial-Lock in partition. You can use lamps in place of the alarm bell and eleciric door latch for testing. Schematic diagram of the power supply (below) shows how various voltages are taken from unit with a common ground lerminal.
on row 2 but it is best to use a connection near the end of row 2 for the added protection more numbers give.

When the circuit is completed to the magnetic door latch the latch will buzz-and continue to do so until SI is thrown to the start gr off positions if you do not use pushbutton S4. When you want to lock the door again you must dial a number to get the wiper arm off the door lateh contact.

Most hardware and electrical supply houses stock, or can order, the magnetic (electric) door latch-particularly those in areas that have many apartment buildings.

Minor Adjustments. Before the stepping relay is mounted on the panel a few minor changes should be made. Unless you want to include an automatic reset circuit remove the contact leaves at the bottom of the stepping relay assembly. They are not included in this circuit and are removed so they will not hamper the stepping action of K1.

Since these relays are not new some have connections soldered to them already. Sometimes these can be used for the alarm bell circuit connections-it won't matter if you interchange the rows of contacts (1 and 2 for 3 and 4) if they happen to be wired already.

If the stepping relay misses a step now and then you can adjust the stop point slightly as shown in the photograph.

The contact points on the latching relay (s) may have to be closer spaced. (Leave well enough alone if possible. The contacts can be cleaned with a strip of writing paperjust draw it lightly through the contacts several times.) But if you become really desperate and want to take the chance you

can use a pair of long-nosed pliers and bend the moveable center contacts downward. They should not touch-just be close enough to make good contact when the coil is energized. But before you start make real sure that the contacts are clean.

Construction. The Electronic Dial-Lock may be built on two chassis and located inside the locked room while the dial assembly is mounted in its own chassis box near the door. The dial-lock as shown here was mounted on one chassis with a panel. The major parts, except the magnetic door latch are placed on the front panel while the power supply is wired in the chassis and mounted as an assembly.

Cut the panel to $81 / 2$ by 10 -inches-use hardboard, aluminum or steel depending on how "secure" you want your dial lock to be. Drill all holes before finishing the front of the panel. The stepping relay mounts to the left and the telephone dial assembly at the top center of the panel. A $21 / 4$-inch hole (drilled, punched or cut with a circle cutter) is needed for the dial assembly so it will lay flat against the front panel. After all the holes are drilled clean the panel thoroughly for painting. Two or three thinly-sprayed coats are better than one heavy coat but let

THE ELECTRONIC DIAL-LOCK

the paint dry overnight to harden properly before assembling the rest of the front-panel.

The Power Chassis. The only critical part of the power supply is D1-it mounts directly to the metal chassis which serves as the heat sink. This is very important. If D1 overheats it can be ruined in the time it takes to dial the combination numbers. Make sure the mounting hole for D1 has been properly deburred. The mica insulating washers are easily punctured by rough edges or stray metal filings that stick to the conducting grease that insures complete contact for heat conduction to the chassis.

The Wiring. The job is quite simple, if you start on one section of the circuit at a time. Begin with the power supply wiring. Then wire the telephone dial assembly and stepping relay solenoid. In the photographs you can see the correct terminals of the dial assembly to wire into the circuit. You will note the small governor and contact points on the dial assembly-keep them clean and free of chips and solder droppings.

Be sure to use awg \#22 (or one size larger) solid-hookup wire. Check the wiring
over at least three times, quite slowly. Run the AC line cord, through a grommet in the chassis, to the magnetic door latch. The length of this wire depends on how far the control board is away from the lock itself.

Open the Door Richard! Let's give it a run for the money, so to speak. You have chosen the numbers that you want to use as the lock combination. So, flip the switch to start position. Rotate the telephone dial one step at a time until the start light comes on. Set the switch to the operate position. Now dial your number combination and the door buzzes. Open the door and flip the start/operate switch to off.

If the door doesn't buzz, go through the complete cycle again. Notice when the latching relay energizes. (You can hear it click in.) Check the connection to the stepping relay. When you come to the last number see if the wiper of the stepping relay stops at this contact.

Be sure the stepping relay is not jumping a step. Adjust the spacing at the rear of the solenoid. Check the contacts on the latching relay-see if they are difty, or making contact. Be sure this relay holds through the last two complete rotations of the stepping relay. Go over that wiring again. Now have some of your friends or relatives try to open the door.

RTVE's Audio Compressor

Continued from page 36

Some Modifications. If the compressor is to be used with a high-impedance microphone, a transformer will be needed to match the high impedance of the microphone to the low-impedance input of the compressor. A suitable unit would have a 100,000 -ohm primary and a 1,000 -ohm secondary, such as the Lafayette 99 R 6034.

When the compressor is to be used with a transmitter which normally uses a low-impedance microphone, replace C6 with a 2 MF electrolytic capacitor.

Operation. With the output control (R8) and the Compression control (R11) fully counterclockwise, advance the output control until the modulation reaches 100% on peaks. Next advance the compression control until the modulation drops to about 60%. Now bring up the output control. Repeat this process until optimum results are
obtained. If you don't have access to a modulation meter, peak the compressor by adjusting it while listening to your signal for best results.

As this compressor provides a substantial amount of audio gain, along with voice compression, the output may have to be reduced to prevent overmodulation with some transmitters. This can be accomplished quite simply by renoving capacitor C3 from the circuit. Without a bypass capacitor across R3 the gain of transistor Q1 is reduced because of degeneration (negative feedback) in the emitter circuit. If audio output is still too high readjust modulator or remove capacitor C5.

When properly used, voice compression can make the difference to a Ham, between making or not making a contact with that rare DX station. Do not, however, be misled into thinking that if a moderate amount of compression is good, that a greater amount of compression is better-it's not. If the compression control is set too high serious distortion will occur, and actually reduce the intelligibility of your signal.

JENSEN Model CC-1

Stereo Headphone

Control Center

- The Jensen CC-I is a headphone control center designed to free the headset user from the imnediate confines of the amplifier or receiver. In addition, it provides "space perspective," an effect that compensates for the binaural effect-decidedly left or right sound-common to headphone reception.

As normally used, headphones are connected at the amplifier location so the user can adjust volume and separation controls at his discretion. If the amplifier location is not the most comfortable-which it usually isn't-an extension cord can be connected to the headphone so the listener sits in his favorite chair. Unfortunately, extension cords mean the listener must get up to readjust the amplifier controls.

A second problem with headsets is "sound perspective." When stereo programs are reproduced from a speaker, normal room reverberation spills some of the right sound to the left ear and some of the left sound to the right ear. Recording engineers, who use speaker monitors, naturally hear the monitor sound as you would in your home. However, the actual recorded tracks do not contain as much center fill as much of the center fill intermixture is provided by the room acoustics. Additionally, with speaker reproduction, there is a slight time delay-the left ear hears sound from the right side a fraction of a second after the right ear, and vice versa.

When headphones are used for monitoring, both the room acoustic effect and the time delay are lost as the sound is fed directly into the ear; and on some stereo programs the sound appears to come from way out on the right and left with nothing in the center-a most unnatural and unmusical elfect.

The CC-I Stereo Headphone Control Center attempts to overcome both the head-
phone problens by combining volume and switching controls with "space-perspective" correction in a single armchair sized cabinet.

Wire Talk. The CC-I connects to the amplifier's left and right speaker output terminals. Then a pair of leads are run from the CC-1 to each speaker. One of the CC-1's front panel switches determines whether the amplifier connects through to the speaker or to the CC-1's headphone jack(s). Two jacks are provided so that two sets of 4 or 8 ohm headphones can be used simultaneously. (The phones must be 4 or 8 ohms to insure proper operation of the "space-perspective" circuit.)

Once the speakers and phones have been connected the CC-1 takes over local control of the amplifier's output signals. A ganged volume control is provided that simultaneously adjusts the level of both channels. In addition, a separate balance control adjusts the level between the two channels. A third control determines whether just the left or right channel is fed to the phones or whether the phones reccive the normal stereo program or reversed stereo (left side sound to the right and vice versa). The fourth control

Shot of Control Center with cover removed shows wiring, controls, and terminal strip for connecting both amplifier and speakers.
selects either headphone or speaker.
The remaining control determines either mono, stereo or stereo with space-perspective. In the mono mode the outputs of the left and right amplifiers are connected together (through suitable isolation resistors

Five controls are spaced across the $\mathrm{CC}-1$'s front panel. From left to right: Speakers (On-Off); Channel/Stereo (left, right, reverse, normal); Mono/Stereo (mono, regular, space perspective); Balance (increase left, normal, increase right); and Volume control. See text for operation of space perspective.
to avoid having two transistor amplifiers short-circuit each other).

When set to the stereo-space-perspective mode, equalizing networks are connected in the headphone circuit so that some of the right sound is fed to the left ear and some of the left sound to the right ear. However, while this sounds like straight center channel fill, it's really not. The cross-feed sound is delayed (via the equalizers) 0.4 milliseconds; the time it would take cross-feed sound to reach the opposite ear when listening to speakers.

How it works. The switching and volume functions are excellent, in the sense they do exactly what they're supposed to do. Except for tone control adjustments, amplifier control is moved to the listening location (it can even be in the next room).

The space perspective depends upon what you think is good sound. On early stereo recording with a decided ping-pong effect, or new recording with ping-pong, spaceperspective works well. Without it, the sound appears to come from way out on both sides. With space perspective in, the
sound appears to be suspended in space somewhere's above and behind your head. (Some listeners said the sound was above and in front of the head.) We can safely say that space-perspective definitely corrects for early recording technique deficiencies.

Newer recordings. in which the sound has been moved to the center stage by the recording engineer, are not in the least improved by space-perspective as the center fill already exists on the record. If anything, with good recordings, space perspective appears to add a bit of definition-sort of a boost to the midrange frequencies. While not generally noticeable on newer musical recordings, space-perspective does appear to "sharpen" the definition of choral works.

More Power to You. Quite naturally, the CC-1's volume and balance controls as well as the space-perspective burns up a lot of audio enegry. While headphones are usually more sensitive than speakers, requiring much less driving power, the reverse is true when using the CC-1 as much of the amplifier's output is used to compensate for the CC-I's losses. We estimate that the CC-1 requires an amplifier capable of delivering a minimum of 10 to 15 watts.

To Buy Or Nor. If you need local control of the amplifier switching and volume adjustments at your favorite armchair the CC-1 will obviously fill your needs and can well be the only reason one needs to buy the unit. If you're looking for a new dimension in sound better give the space-perspective a long listen at the Hi-Fi showroom; and take along your own records. If you've always complained of excessive headphone separation space-perspective might be your new sound dimension. This is especially true for rock-and-roll, "bop", and twist recordings. But if you've been generally satisfied with stereo headphone sound, space-perspective will probably offer no new sound thrills.

Price is $\$ 52$. For additional information on the CC-1 Stereo Headphone Control Center write to Jensen Manufacturing Co., Dept. KK, 6601 South Laramie Ave., Chicago 38, Illinois.

RADIOTV EXPEATMENTEB
 IA
 BCHECK

HALLICRAFTERS Model CB-15

Transistorized AM/Part-15

Receiver/Walkie-Talkie

- If we needed a single phrase to describe Hallicrafters' latest CB walkie-talkie, the CB-15, we'd probably go for "Portable Communications Center", for in a way the CB-15 is a communications center for people on the go.

The CB-15 is basically a nine transistor 100-milliwatt walkie-talkie with two big extras-a built-in standard broadcast AM radio and about the most reliable construction we've yet to run across in pocket-sized equipment.

As a CB walkie-talkie the CB-15 is similar in performance to any other high-quality pocket sized transceiver. It runs the legal limit of 100 mm . input, has a 48 -inch whip antenna and is good for a range of about two miles in open country.

Both transmit modulation and received audio quality is notably good, distinguished by very low distortion. Somewhat unusual, the CB-15 is insensitive to receiver overload

and two of these units could be used within a hundred feet of each other without overload turning the modulation into undecipherable hash.

The CB-15 converts into a "transistor radio" by simply throwing a slide switch mounted on the back of the case. Compared to most other pocket size radios the CB-15's performance is superb. First, the AM tuning dial, which is located on the top of the case, uses a slide rule dial taking several turns of the tuning knob to cover the BC band from end to end. Selectivity and sensitivity is high (by transistor radio standards) and though the dial is virtually filled with signals at night the stations can be easily separated. Unusual for transistor radios, sensitivity on both the high and low ends of the band is high: there's no general loss of sensitivity as the radio is tuned to the high end stations. As with CB transceiver performance, the radio sound is exceptionally clean (again by transistor radio standards).

The AM radio utilizes its own built-in loop antenna; extending the whip has no effect on AM reception as it's used only for CB.
(Concluded overleaf)

Top of the CB-1 5 reveals the AM luning dial. The whip antenna for CB communications telescopes out of the case. Neat packaging of the receiver/ walkie-falkie is shown at the right. CB crystals plug in for receive and transmil; $A M$ antenna is buill in; and battery holder is spring loaded.

AM LOOP ANTENNA

A Peek Inside. Removing the cabinet cover reveals some surprises. Both the transmit and receiver crystals are standard miniature plug-in type and the operation channel is changed by simply plugging in another set of crystals. The individual components

Small slide switch on the back of the case selects CB or AM operation. Jack is provided for earphone which comes with CB-15.
appear to be of the highest quality, and every single resistor as well as any other metal component which could possibly short-circuit if inadvertently moved is completely enclosed in a plastic sleeve.

The six penlight (AA) batteries are housed in a removable plastic battery holder which spring loads the batteries to insure good contact.

Earphone reception-an earphone is pro-vided-is available via a jack on the rear of the case. A second jack permits the CB-15 to be powered by an external battery pack or AC power supply. (You'll have to build your own power supply as it's not an option.)

Complete with leather case, strap, earphone and earphone case-and naturally, one set of CB crystals-the CB-15 is list priced at $\$ 59.95$. For additional information write to Hallicrafters, Dept. PK, 5th \& Kostner Aves., Chicago, Illinois 60624.

We dare you to build it!

Before you accept the challenge, take a second look! Don't take a third though, 'cause chances are your eyes will make a couple of ambihelical turns and screw right out of your head! They may act like the unique nuts above; any attempt to remove them will only tighten them; for this reason the nut must be fully screwed on before it can be screwed off!-NAA "Operations and Service News"

Build the

 ScreamerUsing the perf-board construction technique you can build a variable tone siren that will wobble up and down in frequency controlled by a pushbutton.

- Back in the not-so-good-old-days the circus announced it was back in town by having the band march down Main Street playing Screamers, big brassy marches that attracted people and horses from ten miles out. The modern version of the screamer is the siren; let one loose and you get the right of way in traffic, you can gather crowds till you've got the roadways blocked from curb to curb, or you can set one off behind your secretary and watch her jump ten feet into the air.

Even if your junk box is no more than an old collee container stuffed with salvaged parts you can throw together a Screamer, an electronic siren, for a couple of bucks and an evening's work. Assemble the screamer on a piece of perf-board, as shown, and you've got a unit you can tuck out of sight in your pocket or under the dashboard.

The Screamer will operate off either 6 or 12 volts. At six volts the current requirement is only 20 mils so you can get away with a small 26 battery or four penlights if you want a small portable unit. (Actually, some low quality transistors will draw up to 50 mils on standby.) The volume depends on the speaker-any 8 -ohm type will do. A small two or three-inch transistor radio type speaker will just about strain the ears in a 10×20-foot room, while a 12 -inch speaker, or a PA horn, will blast you out of the house.

Building the Screamer. The electronics is assembled on a stock size piece of perforated wiring board $27 / 18 \times 33 / 8$ inches. Flea clips are used as tie points. To avoid a parts jam,
even though the board is oversize, the resistors are mounted on end and a printed circuit type-both leads protruding from the same end-capacitor is used for Cl . To simplify wiring, the transistors are mounted on the bottom of the board with their leads sticking through the perforations to the wiring side. Q2's collector connections are made directly to the transistor case via lugs under the mounting screws.

While Q1 and Q2 are specified in the parts list, any low cost equivalents can be used; just make certain Q1 is npn and Q2, pnp. It is possible for a Q। with high leakage current to cause the Screamer to pulse a tone burst every few seconds even with trigger switch PB1 in the off position; if it happens simply substitute another transistor for Q1.

Resistor and capacitor values are not necessarily critical and the Screamer will work with anything close to the specified values. While the resistance values deter-

More than enough space is available on the perf-board; however, mount the resistors on end-start saving space as a matter of praclice because that next project may be crowded.

Capacitor C2 provides the necessary feedback to bring the audio amplifier circuit into oscillation. Try different values for C2 (see text) to alter the Screamer's ouput pitch.

The finished Screamer (below) is relatively flat and will fit nicely into a plastic jewel box.

B1-6 or 12-volt battery (See text) C1-30-mf., 15-WVDC electralytic capacitor C2-.02-mf., 75-WVDC or higher (See text) Q1-2N2102 or any general purpose npn audio transistor Q2-10-watt, pnp power transistor Ilafayelte 19RI501 or equiv.) R2, R3-56,000-ohms, $1 / 2$-watt resistor S1-S.p.s.t. on-off switch S2-Normally off push-button switch SPRKI-8-ohm loudspeaker (See text) Misc._Perf-board ILafayette Radio 19R36051, Flea clips ILafayette Rodio 19R33011, wire, solder, etc.

mine the output frequency(s) to some degree, C2 has the greatest effect. The specified value of .02 mf . produces a high pitched tone just about equal to that of the new police type electronic sirens. To lower the tone increase C 2 's value; to raise the pitch decrease C2.-any value from .01 to .1 mf . will work.

Using the Screamer.Turn the main power switch, S1, on. Then press the normally open push button, $\mathbf{S} 2$. When $\mathbf{S} 2$ is closed a rising

tone will be heard in the speaker. Releasing S2 will cause the tone to slide downscale. If $\mathbf{S} 2$ is alternately closed and opened the output will be a rising and falling wail.

Just one note of caution. The police of most communities frown on the average citizen opening up holes in bumper-to-bumper traffic with a siren. If you get any ideas about sticking one in your car just make certain you hold some position that entitles you to a siren. -Herb Friedman

Zip Along Zip Numbers

An electronic engineer tests the new revolutionary high-speed ZIP Code "reader" in the highly mechanized Detroit Post Office. The "reader," attached to an existing letter sorter, is designed to sort incoming and outgoing machine-printed ZIP Coded mail to 300 separations at a rate of 36,000 letters per hour. The system, using two electronic scanning units, examines the face of each envelope, locates the ZIP Code and then instructs the letter sorter where to distribute each letter. In addition, the machine is capable, at the flick of a switch, to sort incoming or local mail directly to letter carrier delivery routes within the city. The equipment is the first of its kind in the world.

By C. M. Stanbury II

Propagation Forecast

Conditions for these next two months will be described by many as "normal." Which means that most distant reception will occur above 7 mc . due to that combination of a rising sunspot count and a peak output of summer static. The situation is good for day after day reception but poor for really spectacular $D X$.

Excepting Latin America, most rare $D X$ there is will be found on 41 meters. Even there, interference from amateur stations will become an increasing problem for $S W B C$ hunters. This reverses a trend of the past couple years when broadcast transmitters pretty much dominated the band during hours of darkness. If your receiver is blessed with crystal selectivity, you will find

June/July 1966

41-meter frequencies below 7200 kc . best. U.S. hams are permitted to use only CW here and crystal selectivity with the phasing control can eliminate some of this $Q R M$.

Despite its expanse and widely differing range of distances from the U.S. and Canada, we have always treated Latin America as one reception area and for most time periods this method works well. But note that at 1500-1800 listener's time, 16 -meters is listed specifically for Brazilian reception. At least 7 Brazilian stations operate up here and many will have clear channels during that period. Further, we can expect comparatively improved reception from South America below the equator on all bands. Remember t 'is winter down there.

To use the table put your finger on the region you want to hear and log, move your finger to the right until it is under the local standard time you will be listening and lift your finger. Underneath your pointing digit will be the short-wave band or bands that will give the best DX results. The time in the above propagation prediction table is given in standard time at the listener's location which effectively compensates for differences in propagation characteristics between the east and west coasts of North America. However, Asia and the South Pacific stations will generally be received stronger in the West while Europe and Africa will be easy to tune on the east coast. The short-wave bands in brackets are given as poor second choices. Refer to White's Radio Log for World-Wide Short-Wave Broadcast Stations list.

- If you are one of those people who feels that building your own workbench or rack for test gear or ham station is a bit beyond your talents as a craftsman, you can now cast that reservation aside. We've uncovered a steel framing material called slotred angle that will enable you to build a tailor-made, professionally finished unit, using the very simplest of tools-just a $7 / 16^{\prime \prime}$ wrench and a hacksaw. Slotted angle goes together with nuts and bolts much in the same way as a boy's Erector set, and it's just as much fun but, don't let the kids know.
To build this handsome, split level beoch you'll need 41 feet, 10 inches of slotted angle, plus a few accessory items. (See Material List.) Dexion's 125 slotted angle, the size we chose for this project, is packaged in quantities of 52^{\prime} (eight $6^{\prime} 6^{\prime \prime}$ lengths). Each package also contains 75 nuts and bolts and 20 corner plates and sells for approximately $\$ 12.75$ a package. Special plastic feet that slip onto the ends of the slotted angle are available separately. Both Allied Radio and

Lafayette Radio Electronics Corp. as well as hardware and building material outlets carry the Dexion product line.

Making the Bench. Your first step will be to cut the slotted angle to size using an ordinary hacksaw. To get the most out of your material follow our cutting schedule in the Materials List by sawing your longest lengths first, followed by the next in size, etc. Dexion slotred angle is embossed with diamond marks at one inch intervals and it is important for proper alignment to cut exactly on these marks.

Once all your slonted angle has been cut you cau begin assembly by bolting your two side frames together. These are the four legs and horizontal side pieces that join the legs on each end together as shown in the Detail Drawing. Be sure to use the corner plates at all points shown.

Now tie these two frames together using members A, B, and C. Next, bolt members D, E, F, and G into place. All bolts should be finger tight at this point. You can now install your $3 / 4^{\prime \prime}$ plywood decking on this first

You can custom make your hobby area to suit the job. The shelf height can be designed to accommodate test insiruments or ham gear. Storage sheives can be added undar bench top for iools, gadgets and books.

level notching it approximate!y $7^{\prime \prime}$ back from its rear edge in order to clear members D and F. Once this has been completed, bolt the rest of the members into place (H through L). Now lay your top leve! decking into place and fix both levels permanently in position with wood screws. You can now tighten all bolts until every joint is absolutely rigid.

MATERIAL LIST

1-A package of Dexion 125. Project requires $41^{\prime} 10^{\prime \prime}$ of slotted angle, 20 comer plates and 72 nuts and bolts.
4-Dexion 125 plastic feet
1 - $1 / 4^{\prime \prime}$ plywood $39^{\prime \prime} \times 24^{\prime \prime}$
1 - $14^{\prime \prime}$ plywood $7^{\prime \prime} \times 39^{\prime \prime}$

CUTTING SCHEDULE

(A) -7 pieces of $39^{\prime \prime}=22^{\prime} 9^{\prime \prime}$
(B) -2 pieces of $29^{\prime \prime}=4^{\prime} 10^{\prime \prime}$
(C) - 1 piece at $27^{\prime \prime}=2^{\prime} \quad 3^{\prime \prime}$
(D) -4 pieces at $24^{\prime \prime}=8^{\prime} 0^{\prime \prime}$
(e) -2 pieces ai $10^{\prime \prime}=1^{\prime} 8^{\prime \prime}$
(F) -4 pieces at $7^{\prime \prime}=2^{\prime} 4^{\prime \prime}$

$$
20 \text { pieces } \quad 41^{\prime} 10^{\prime \prime}
$$

it's Up to You. The work bench illustrated in this article was designed to serve as a bench in a ham shack that could serve equally as well as a work surface during repairs or project construction. The design is basic and çan find countless applications. However, don't let us design your work bench. Conjur up your own design at the drawing board, it's easy to do and the end result usually is great.

For a test bench, shelves are often the best arrangement for instruments while the setup for a Ham station may be better if the layout is designed to accommodate the standard relay-rack panels. The 19 -inch wide panel is the most common.

For more information about Dexion slotted angle write to Dexion, Incorporated, Dept. JS, 39-27 59th St., Woodside, N. Y. 11377. They've just published their latest "idea pamphlet" which illustrates a variety of twentyone applications for slotted angle, ranging from a workbench to a bicycle rack. It's yours for the asking.

If you've ever thrilled at the sound of a distant "skip" CB station rolling through on your CB rig, you'll really flip when you begin hearing stations in Russia, Japan, France, and many other countries. You've never heard them? Don't worry, you soon will.

CB "skip" is governed by ionized layers of the ionosphere above the earth, which, in turn, are affected by sunspots. When there are plenty of sunspots, the "skip" gets heavy, and it can cover many thousands of miles. During the past few years sunspots were on vacation, but scientists tell us that they're on the way back. They predict that within a very few months the 11 -meter $C B$ band will be wide open for world-wide signals-much the same way it was back in the late 1940's when 10 -meter hams were working around the world with 20 - and 30 -watt rigs.

Because of the fact that the countries of the world outside of the western hemisphere have very little CB activity, the 11 -meter band is used by many high power commercial CW and 'phone stations, about 150 of them. You will shortly be hearing these stations, some of which run many thousands of watts. Since they don't have to abide by FCC CB channel restrictions, you'll
be hearing them not only on, but also in between, the CB channels.

The Subject Is Tabled. So that you can really enjoy DX'ing the world on your CB rig, we have prepared a listing of most of the stations you are apt to hear on 11 meters. Your vertical CB antenna will probably do a nice job on these stations, even though the majority are using horizontal polarization. This is because when the signals bounce off the ionosphere, their polarity is usually switched around (at a power loss, natch). For monitoring of CW stations, it is suggested that you either build or buy a beat frequency oscillator (BFO).

Listening here can also be fruitful, a number of very juicy QSL cards have been obtained from a few of the earlier band openings.

So here's your key to hearing the world on a CB rig-the mysterious Russian "CB" network of 1,000 watt stations, a French Navy network, some low powered Japanese "fishing" stations, and even a harmonic of a Mexican station operating on 6 megacycles. So listen closely, gang, you may be the first in your neighborhood to hear someone say "symdjesjat tri" (that's a

Here's your chance to log hot DX during early morning quiet hours. Keep the FCC happy whileyou SWL!

II-METER STATIONS AROUND THE WORLD

When stations are authorized to operate on a CB channel, the number of the CB channel is indicated on the left. All other stations operate between the indicated CB channels and can be heard only on tunable CB receivers

Transformer for DC

> Take back your primary, ay, your secondary, ay, your iron core, ay, ay, ay! Sounds hot? This DC transformer needs liquid helium!

- Working with extremely thin films of tin deposited on a glass slide, a General Electric scientist has built and operated a laboratory model of a direct current (DC) transformer -long considered an "unachievable" scientific goal. The device is a result of research on superconducting materials-metals and alloys that have zero electrical resistance and unique magnetic properties at very low temperatures of liquid helium.

General Electric physicist Dr. Ivar Giaever disclosed that his DC transformer, which can convert a direct current input into a larger or smaller direct current output, has been operated at very low voltages and currents with an efficiency of about ten per cent. Although no immediate commercial applications are foreseen for the DC trans-

In the new DC transformer discovered by Dr. Ivar Giaever, the primary and the secondary are made from two thin films of tin. When the $D C$ transformer is cooled to liguid helium temperatures and a direct current is fed into the primary, magnetic "flux spots" begin to move in one direction relative to the primary film. These flux spots also penetrate and move through the secondafy film, which is only on the order of .000001 inch oway. As a result of this moving (and hence chonging) magnetic field, o direct current is induced in the secondary film. By placing a number of secondary films in series, a secondary voltage can be developed many times higher than the primary voltage. Similarly, by placing a number of primary films in series, the output voltage can be "stepped down" below the input voltoge-tronsformer stylel

former, the device marks the achievement of a goal that had eluded researchers ever since the alternating current transformer was first demonstrated nearly a century ago.

AC vs. DC. AC transformers consist basically of two separate wire coils placed near one another. When an alternating current is passed through one coil (the primary winding), a changing magnetic field is pro-duced-one in which the magnetic lines of force travel first in one direction and then in the opposite direction. This changing field induces an alternating current in the second coil (the secondary winding). Conventional AC transformers are unable to transform direct current-which, in materials with conventional magnetic properties, sets up an unchanging magnetic field.

In Dr. Giaever's new DC transformer, the primary and the secondary windings are made of thin tin films, which belong to a family of Type I/ superconductors. When an ordinary superconductor is placed on a magnetic field, the metal excludes the magnetic lines of force. Type II superconductors, on the other hand, can be penetrated by a magnetic field-but only in so-called "flux spots." When a direct current is passed through the tin primary, the magnetic flux spots begin to move in one direction relative to the film. In the DC transformer, these flux spots also penetrate and move through the adjacent secondary film. As a result of this moving (and hence changing) magnetic field, a direct current is induced in the secondary film.

The magnetic field fluctuations produced by the primary of the DC transformer exist only very close to the film. Thus, the secondary film must be placed no more than about .000001 inch away from the primary film. In Dr. Giaever's experimental devices,
(Continued on page 116)

I took a swipe at friend bat perched atop the console, it hovered menacingly over my head for a moment. "I outrank you, bird." It made a mock pass at yours truly's left ear then went off and sulked in a far corner of the studio. Besides outranking him, I'm also not superstitious. If I were, I never would have kept this job a whole month.

I turned on the carrier, let it warm up a moment then went on the air. "This is Radio Station YZUN transmitting from Motor Vessel Vampire." So we drifted a little. "YZUN is owned by Count Y from the planet Zunar. Your announcer is Knight X." I was the announcer every morning. And evenings too! Started the program off with some spooky music.

Princess Q entered the studio noiselessly, noted that my mike was off. "Studio already for the Count's publicity pictures?" The Princess served as YZUN's station manager, secretary and general girl Friday.
"Complete with yonder bat." The thing flapped his wings and I displayed my long gray cape.
"And how do I look?" she said, posing in her low-cut snow-white shroud.
"Succulent."
"Down man, Countie gets jealous, remember." She considered it and laughed. "He's the worrier type."
"The man should worry. He's old enough to be your father."

She whispered softly, "Papa's got the money."

Count Y's real name is Fred Gant and he's a veteran con artist who used to work through a Mexican border station at Matamoras until his electronic device for warding off witches and werewolves was even too much for them. So he turned the coin over, became a vampire himself and went maritime mobile. But he still gets his mail through the same Brownsville P. O. Box.

I let the turntable move on to another cut, "Gloomy Sunday," without making an announcement. "How soon's he supposed to be back from Progreso with that photographer?'"
"Anytime now." She looked over my script.
"Good. I'm hot as the devil in this outfit." I had another complaint for Count Y too.
"Where's the Spanish version?" She returned the script.
"In my pocket. Hush now, I've got to start on this." Gloomy Sunday faded out and I opened my mike. "It is time. It is time you joined the Reformation. It is time you sent for that first book of instruction."

Princess sat down in that corner furthest from the bat.
"We have been sent by Zunar, 12th planet from the Sun, to show you the way. Vampires live forever if not corrupted by mor-

tals. Therefore all mortals must become vampires." Assumed my most serious tone. "If you do not join us, Zunar will send its space army and conquer the Earth."

Bat took off, crossed the room, and tried to perch on Princess' shoulder. She shivered a little and chased it away.
"You need that book of instruction. Oh, how you need this book. It's only two dollars, just the cost of printing." Switched to my hungry tone. "Do it now. Send us two dollars by cash, check or money order."

I cued in some more music just as the Count filled the doorway. He was alone.

The Princess got up keeping one wary eye

on bird. "Where's your photographer?"
He shrugged. "The Mex wanted too much." Produced a camera and a box of flashbulbs from beneath his long black cape. "Decided to do the job myself."

Of course when YZUN broadcasts in Spanish, we were always careful to say "Mexicano."

Hands on hips she shook her head. "Papa, I knew you were tight but this is ridiculous."

He stuck a flashbulb in his camera. "How do you think the old count has stayed in business all these years."

So I spent the rest of the morning trying to announce and pose at the same time. The Count was so unsure with his camera that he'd take each shot ten times. We spent twice what that Progreso photographer would have cost us. And when not announcing, I had to take pictures of him. Around 1400 the Princess was fed up to here with the picture bit. She went up on deck for some air.

He ran over his work mentally. "Let's see, we need another shot with me and the bat."

I laid the camera down atop my console. "Take five, Count, there's something I want to talk to you about."

Like he'd just seen the wooden stake. "You want more money?" Took a long deep breath. "Where was it you were working before you tied on with Pops, some little station at Piny Swamps?"
"Something like that."
"And you got fired from the job."
"It's not money I want, it's shore leave." To signal his support, the bird rat flapped both wings.

The Count grinned and mopped his brow. "Sure, when we get back to Brownsville next month."
"No, I want to go into Progreso tonight." Assumed my most determined bearing. "I haven't been off this scow for a month."
"You can't do that, boy. It'd spoil our image." The bat hovered over the Count's head but he ignored it.
"Well, I wouldn't wear the cape or nothing."

The Count laughed, big put on friendly laugh. "Oh, they'd still put gringo and gringo together." He slapped me on the back. "We've had enough of this picture taking business for today. Go on over to your cabin and take the day off." Deadly serious. "I'll announce the evening show myself. Go on now, that's an order."

So I did.
And brooded. When it got dark, bat came and flapped at my door. I let him in, then we both brooded together. Not only did the Princess have a heart of silver, literally, but this job with YZUN was taking me nowhere fast. Just like the ship itself, I was anchored. Then, the Count was not only a tight fisted phony, but stupid and ignorant too. He's still back in the 18 th century when vampires spent their days hiding in coffins.

Bird flapped his wings in agreement.
You really don't talk people into becoming vampires, no matter how many watts YZUN put out. Soon the novelty would wear off, the revenue would drop off and just like that comes the end of the road.
"Agreed."
So that left me no choice. I turned myself into a bat and along with bird flew out through the porthole, circled the antenna nast once and headed into Progreso. Like I keep telling the brass back on Zunar, there's only one way to make people into vampires. And come tomorrow morning, YZUN will have lots of new listeners.

Dlectronic Light Watchman

by Edward P. Nawracaj

Headlights or parking lights can't accidentally run down the ignition-system storage battery when this little computer is on duty-always alert.

NTo doubr you have at one time or another parked your car, locked it and walked off. Only looking back, by chances lis you discover that you had forgotten to turn off the lights. Sure, it s an inconvenience to go back and shut them off - but it's better than returning several hours later and making that discovery after your battery had run coown to where it couldn't start the car.

Here is a warring device to connect to your car. It sounc's an alarm and flashes a light whenever you turn your ignition off ε nd leave your lights on.
A simple computer. This circuit has been designed to ind-cate whether certain woltages are present or albsent - whether the headlights are on when the ignition is off.
The circuit uscs two npm transistors:-booth are wired to act ats swieches. When a positive voltage is applied to their base cirev its they become a closed switch (the transistor is saturated). Wit out voltage at the base the switch is open (the transistor is cufoff s . In the schematic diagram (Fig. 1) transistor Q1
(cyntii ued overlant)
is a logic circuit; Q2 is just a switch for indicator lamp II and a contact protector for K I (II draws about 150 milliamperes-the coil of K1 about 20). As warning indicator II blinks or flashes rapidly, as KI also clicks out its warning that your lights are still on.

How it works. Referring to the schematic diagram (Fig. 1) let us first assume that both the automobile headlights and ignition are turned off. Since the entire circuit is without power no alarm will sound.

With the ignition turned on and the headlights off (as you would for daylight driving) voltage is applied to the base of Q1 but none is applied to the collector because that circuit gets its voltage from the headlight switch which is off. Some base-to-emitter current flows in Q1 but not in Q2-without collector current an alarm cannot be sounded.

Fig. 1. In the circuit above, capacitor Cl can be increased in value to slowdown clicking of relay K 1 and flashing of warning lamp 11.

Fig. 2. Resistance RIA (1000 ohms) limits current through the high-frequency buzzer and drops the voltage so that rated value is measured across high-frequency buzzer terminals.

When both the lights and ignition are on Q1 conducts because the collector and base are at the same potential (+12 volts). Q 1 is now a closed "switch"-current flows through R1 and relay coil (K 1) is shorted by Q1 and the relay contacts remain in their normal (deenergized) position. Again no alarm is sounded.

The alarm will be given only when the headlights are left on and the ignition is turned off. When the ignition is off the voltage applied to the base of Q : is absent. The collector-to-base current through Q1 stops and relay coil K 1 is not shorted any longer (its "switch" is open). Resistor R1 is now in series with the coil of K1 and, since their resistance value is about equal approximately half of the 12 volts from the battery will appear across R1 and the rest across

Completed unit above is held into chassis box only by the pilot-lamp assembly jewel bezel.

[^2]the 6-volt DC coil of flasher relay K1.
The 6 volts across K1 causes the relay armature to be attracted to the core. As it is pulled closer the normally closed (NC) contacts are opened and the normally open (NO) contacts close momentarily. The coil of K1 deenergizes and the NO contacts open and the NC contacts close-starting the en-ergize-deenergize cycle over, again and again, until either the lights are turned off or the ignition turned on.

The frequency of the energize-deenergize cycle depends on the flexibility of the contacts of K1 and the capacitance of Cl. With C 1 discharged it takes a certain time for the voltage to build up across K 1 as C I's charging current is limited by R1. When K1's NC contacts open the charge on Cl keeps the coil energized for a time after the NC con-

Fig. 3. When using this circuit wire a 10 -ohm resistor across buzzer to pass additional current to light lamp 11 properly. Resistor R4A should be 27 ohms, $1 / 2$ walt for a \#47 lamp.

Fig. 4. Basic parts layout may seem a bit crowded-parts placement is not critical. Pilot-lamp jewel bezel threads into ring of pilot-lamp assembly that surrounds lamp 11.

Fig. 5. Rewiring relay KI allows vehicle hornbutton circuit to become part of the Light Watchman. It is hard to ignore a rapidly beeping horn-if local laws permit such use.
tacts open-keeping the NO contacts closed. Normal RC time-constant calculations do not work here since the on-off time is affected by the pull-in and drop-out characteristics of the relay-the capacitor does not charge fully or discharge completely during the energize-deenergize cycle. To slow down the repetition rate of the clicker and flashing light increase the capacitance value of CI. Do not change R1 unless another relay, with different coil resistance, is used.

Flasher \mathbf{S} witch. The other half of the circuit is just a "switch" that controls the current through I1. The base bias of Q2 is just the charge on Cl. When the NO contacts close +6 volts is applied to the base of Q2 through R3 and current flows through the collector-emitter circuit of Q2 lighting I1. R4 is a current limiting resistor and about 6 volts drop appears across it when current flows through II and Q2.

Some Changes. If you feel that the clicking of K1 is enough warning for you just forget about R3, R4, II and Q2. Without them K1 will still click about 5 times each second. (For a more audible click the relay (K1) should be mounted directly on the metal case instead of on the phenolic perforated board.)

For an even louder attention-getting warning a low-voltage, low-current, high-frequency buzzer can be used in the circuit. Connected in series with R1 (Fig. 2) you can eliminate $\mathrm{K} 1, \mathrm{C} 1, \mathrm{R} 3, \mathrm{R} 4, \mathrm{I} 1$ and Q 2 . This brings the cost of the project down to about $\$ 2$. Of course the buzzer can be connected in series with R4 and I1 too. (Fig. 3). If you connect the buzzer into the circuit be sure to change the value of R 1 or R 4 as indicated in the schematics.

Construction. Component layout is not at all critical as long as you make sure that nothing touches the aluminum box to make an accidental short circuit. Fuse F1 (Fig. 2) can be included to automatically disconnect the unit from the light switch-it will not protect the transistors under all of the pos-

Light Watchman with dashboard mounting bracket that fits holes drilled in dashboard.

Details of mounting bracket-bend offset to clear the box's flanges or use spacers or nuts.
sible problems that can arise from improper wiring or sloppy construction.

In the parts layout in Fig. 4 fuse F1 was not used. About three $75-\mathrm{mf}$ capacitors can be stacked (connected in parallel) on top of Cl if you want to make the click slower or flash interval longer. This can be a lot easier than laying out new positions for the components in a larger case just because a higher capacitance unit will not fit in the space for C 1 .

Use Your Horn. In areas where it is not prohibited, circuit for relay Kl can be rewired (Fig. 5) so that the NO contacts can be used to actuate the horn relay-do not use the contacts of KI to operate the horn directly since this heavy current will burn the contacts of K1.

Parking or Headlights. If your local laws do not require you to leave your parking lights on while your car is parked on the street at night connect while lead (A) to the tail-light circuit. These lights are on a separate switch contact-they are on when the parking lights are on and they are on when the headlights are on. No matter which circuit you use you can check the connection with a test lamp before making it permanent.

Installation. Once you have decided on where you can mount the case that contains the circuitry you'll know whether you need a bracket to mount the unit under the dashboard. Without a light as an indicator you can mount the unit on the fire wall with a couple of self-tapping screws.

With a few under-dash contortions you can connect the white wire (A) to the light switch-just check your terminals first to make sure you connect to the correct terminal.

The red lead (B) can be connected to any of the accessories that go on and off with the ignition-putting the ignition switch in the accessonies position (if your car is so equipped) will allow you to park with your lights on and ignition off if this should ever be necessary. The ignition circuit uses a separate contact on the 3 -position ignition switch. With a sealed ignition switch it may be nécessary to connect directly to the ignition coil "hot" terminal-not the one that goes to the distributor breaker points.

Minuteman "Nerve Center"

A full-scale mock-up of an underground launch facility of the U. S. Air Force's Minuteman ICBM has been built in Waltham, Mass. by Sylvania Electric Products Inc. Actual operational launch control capsules will be located 50 -feet below ground and will be linked to unmanned missile silos located miles away. Air Force officers man the "nerve centers" on a round-the-clock basis. Sylvania constructed the unit as part of a multi-million dollar contract for an improved version of the nation's first solid-fuel, three-stage missile. In photo, officer (rear) is seated at command console. Officer in foreground checks missile readiness at control console. It doesn't look much like a classroom, but it is one of many in America's space-age school system.

By Stanley Leinwoll

Have QSL's lost their thrill?
 Try for a QSL for each language broadcast by those stations!

- During the past several years there has been a significant increase in the number of short-wave transmitters being used in international broadcasting. Moreover, the power of these transmitters has been on the upswing. For example, since 1962 there has been an increase of more than 10 percent in the number of African and Asian nations engaged in high frequency broadcasting. In addition, many Afro-Asian nations engaged in International Broadcasting before 1962 have recently begun to improve their services by adding high power transmitters.

Ghana has recently added two 250,000 watt and two 100,000 -watt short-wave transmitters to its foreign service programs; the United Arab Republic has one 250 kilowatt transmitter in operation, and is planning to add three more; Kuwait has four $250-\mathrm{kw}$ transmitters under construction, and Saudi Arabia is planning the addition of two 250 kw transmitters.

Of even greater importance to the short wave listener has been the expansion of the number of transmitters used by the world's major broadcasters. In particular, the Voice of America and Radio Moscow have added heavily to the number of transmitters operating in the short wave bands.

If's How They Say If. Although the steadily increasing number of transmitters in service, as well as higher average power per transmitter, have resulted in increased interference in the high frequency spectrum, it

TABLE A-FOREIGN LANGUAGE CHECK SHEET

Language	Broadcaster	Date Monitored	Band (meters)	QSL Rec'd	
Adigey	R. Liberty	March 4, 1966	31	Apr 18	
Afrikaans	Netherlands	March 7, 1966	19	Apr 17	
Albanian	BBC	Feb 21,	1966	49	Mar 20
Amharic	Cairo	Feb 28,	1966	41	
Bambara	Moscow	April 1,	1966	25	
Czech	V. of America	Feb 17.	1966	31	Mar 8

has also afforded the SWL unprecedented DX opportunities. Not only have the number of countries engaged in international broadcasting increased, but, of potentially more importance to the SWL, the number of Ianguages being carried in the international services of many of the world's broadcasters has increased sharply.

As a result, the adventuresome SWL, in addition to accumulating country QSL's as he has done in the past, can now begin to collect languages. Because of the higher average power per transmitter, the listener has a better opportunity to hear some of the languages on the air than ever before.

Once he has decided on this entirely different and exciting approach to his hobby, the DX'er can then vary his search for new languages in several different ways.

At the present time, the world's broadcasting community has in regularly scheduled operation program transmissions in more than 135 languages and dialects. This figure has been increasing steadily in recent years, and now includes many exotic, and not often heard-of languages, among which are Amharic, Baluchi, Efik, Fanti, Hausa, Konkani, Quechua, and Wolof.

Log It. One approach to language DX is the direct one: to log as many languages as possible and to collect a QSL for each language. A sample checksheet is shown, with a proposed format for a log, in Table A.

If you have a tape recorder put it to work -collect the station breaks. Often station breaks are given in more than one language which may be identified in yours.

In addition to his receiver, the language DX'er will find a copy of the World Radio and TV Handbook for Listeners an indispensable tool in determining which languages are broadcast by whom, and at what time, and on which frequencies. Most SWL's are familiar with the handbook, which can be obtained at most SWL and electronic supply houses, or ordered direct from: Gilfer Associates, Dept. JS, P. O. Box 239, Park Ridge, New Jersey.

TABLE B-ENGLISH LANGUAGE CHECK SHEET

Broadcaster	Time	Band (meters)	Date	QSL Rec'd
BBC	1700	19	Apr 18	
Egypt	2130	25	Feb 1	Apr 1
Ghana	1630	16	Jan 21	
Switzerland	0115	31	Jan 18	Mar 10
V. of America	1600	19	Mar 1	Mar 27
Radio Moscow	2200	41	Jan 27	Apr ${ }^{4} 4$
Bulgaria	1930	49	Mar 22	

Some Numbers. As a start, the language DX'er can study the schedules of the Voice of America, the British Broadcasting Corporation, and Radio Moscow. Radio Moscow is the world's leader in International Broadcast output, transmitting in a total of 63 different languages. BBC is second with 40 different, and VOA third with 37 different languages. Cairo is a surprising fourth with 26 different languages.
These four broadcasters alone will provide the listener with close to one hundred languages that range all the way from Albanian to Zulu. It will, of course, be impossible to log all the languages of all the world's broadcasters, since many of these are regional dialects, transmitted on low power to adjacent territories; under ordinary conditions, therefore, the signals carrying some of these languages will not be strong enough to be heard over a wide area.

It should be possible, however, for the determined DX'er to log at least 75 different languages in a relatively short time, provided he has accurate schedule information. As indicated previously, the WRTV Handbook is the best source of schedule information for all international broadcasters, offering a wealth of comprehensive information about times, frequencies, and language services for the world's broadcasting community.

Another variation of language DX'ing is to try to \log all the languages transmitted by a single broadcaster. As mentioned previously, the Voice of America transmits in 37 different languages, and would probably be the
(Continued on page 118)

- Several years ago most battery chargers made for use by the home auto mechanic, had red and green lights on their front panel. The green light was a combination power on indicator and a proper polarity indicator. The red light was a wrong-polarity indicator. It would light up if the charger was connected to the battery backwards. The newer battery chargers shown do not have polarity indicators. Many of them do have an ammeter however, which will go violently off scale if the charger is connected backwards.

One of the oldest ways used to detect polarity is to use a potato. Just cut a potato in half; plunge a pair of wires into the cut surface. The area around the positive lead connected to the battery will turn green. A more modern way is to use a voltmeter. However most home style auto mechanics don't have a voltmeter.

This little device that we built uses the property of a silicon rectifier of passing current in only one direction to indicate the polarity of a battery charger. Each rectifier is connected in series with a light bulb and when the plus side of the battery is connected to the positive terminal then the green light will light, but if the negative terminal of the battery is connected to the positive terminal then the red bulb will light indicating that the battery is connected backward. By using 6 -volt bulbs and switching in a scries resistor for a 12 -volt battery, the device can be used on both 6 - and 12 -volt batteries or power supplies.
(Continued Overleaf)

Large terminal screws are for convenience since current is limited by pilot lamps.

> PARTS LIST FOR POLARITY INDICATOR
> D1, D2—Silicon rectifier (Mallory IN2090 or equiv.)
> 11, 12—Pilot lamps (See tex1)
> R1, R2—Resistors, 2-watt (See text)
> S1-D.p.s.f. slide switch
> 1 —molded black plastic case, $27 \%^{\prime \prime} \times 4^{\prime \prime} \times$ 1-9/16" (Allied 87U895 or equiv.)
> Misc.-Green pilot-light assembly; red pilotlight assembly, aluminum for case cover; wire; solder; terminal and mounting hardware; insulating washers; etc.
> Estimated construction cost: $\$ \mathbf{3 . 0 0}$
> Estimated construction time: 2 hours

Start the Project. First collect all the parts on the list. Layout and drill the holes in the cover. The cover can be made of metal, wood, phenolic or other material of your choice. I used aluminum because it is easy to work with. The aluminum was etched in a strong solution of household lye until it had a uniform satin finish. A coat of clear spray was applied and then decals were applied. Another coat of clear spray finished the cover. When mounting the battery connecting bolts be sure and use insulating washers if your cover is made of metal. The polarity connections to the rectifiers are very important because this determines which light will light. You may use type 51 lamps with a 70 -ohm, 2 -watt resistor or type 47 lamps with a 56 -ohm, 2 -watt resistor for maximum brightness during 6-

Complete circuit is mounted on this cover using lamp and switch lugs as tie points.

Circuir is simple. R1, R2 limit current through 6 -volt lamps when used on 12 -volts.
volt operation. If you will be using only 12 -volt batteries (or can stand less brilliance during 6 -volt operation) use a 12 -volt lamp like the $428,1446,1487$ or 1815 . Then you can also eliminate the $6 / 12$-volt switch and the two 2 -watt resistors.

Making Tests. After you have wired and double checked the Polarity Indicator you are ready to test it. To test a battery or battery charger for polarity connect a wire from the plus wing nut on the tester to a post on the battery and connect a wire from the negative wing nut to the other post of the battery. (We are referring to the common type lead-acid automobile battery rather than a dry cell battery.) If the green indicator lights up you are connected properly, but if the red indicator glows you have the wires to the battery reversed. After determining the proper polarity of a battery terminal take some red fingernail polish and paint the top of the positive terminal post.

Neon-Lamp Calculator
 Continued from page 52

wood backing. Then enlarge the circuit board and cabinet top holes to $1 / 4$ inch. The panel mounting holes are also drilled to $1 / 4$ inch. Do not enlarge the 4 mounting holes in the perforated board or cabinet.

Drilling is complete on the cabinet top and panels. But the circuit board lamp holes have to be enlarged to $8 / 10$ inch. And, since bits of this size tend to tear the phenolic, it's best if a reamer is used instead of a drill.

Finally, the cabinet front and back holes are laid out and drilled.

Lamp Subassembly. The neon lamps are held in place by rubber grommets-installing these grommets is the first step. The grommets have a $3 / 18$-inch inside diameter and mount in $\$ / 16$-inch holes.

After the grommets are in place insert the flea clips to support the ends of the bus-wires. Note that the \#9 horizontal wire has a flea clip tie in the center. Next cut and solder the bus-wires. The horizontal wires are laid against the board and are soldered to the bottom of the flea clips. The vertical wires are soldered to the top of the flea clips and their ends are bent and shoved down the center of the clips. The two sets of wires should not touch. Care should be used at the junction of Circuit \#1 and \#2 to be sure the wires are properly placed.

Next put the $5 / 8$-inch, 6-32 machine screws in the mounting holes (heads on same side as the bus-wires) and thread on two, $1 / 4$-inch spacers on each machine screw. A \#6 washer goes between the two spacers. Later, the second spacer and washer are removed and used on the top of the cabinet to hold the board in place but this allows us to use the
panels as a guide for installing the lamps.
Install one lamp at a time and solder it into the circuit. One wire connects to the nearest vertical bus-wire and the other to the nearest horizontal wire. After each lamp is installed, place a panel over the spacers and check the lamp's height. The tip of the lamp should be through the $\%$-as-inch lamp holes and flush with the top of the panel. After the wiring is complete, remove the second spacer and washer from each mounting bolt and install the board in the cabinet.

Rotary Switches. Although the rotary switches specified have 12 positions only 9 switch positions are used. And, since there are no stops, any 9 consecutive positions will work. The terminal in the center is the rotor.

Nothing is preventing the builder from using all 12 positions of the switches to go as high as 12 times 12 etc.-The Editors

Looking at the back of the switch, count counterclockwise when connecting the wires. Connect one wire to each of the 9 positions used. (Cut-off the shafts at the first notch before fastening the switches in the cabinet.) To position the knobs check for circuit continuity and set them accordingly. Mount the remaining parts in the cabinet as shown in the drawings and photos.

Final Wiring. The final wiring consists of merely connecting the switch wires to the proper board terminals. The isolation transformer, R1, and S3 are wired according to the schematic diagram. Note that the \#10 position on $S 1$ is used as a tie point for R1.

The last step is marking the three panels which are used for the different functions.

To check the unit run through the problem combinations shown in the first two groups in the table and check the answers.

The Neon-Lamp Calculator is finished but the fun hasn't even started!

Completely wired unit is ready to be "buttoned up" after final check has been made. Grommet is split to go onto ready-wired linecord of TI. Put a knot in linecord to give some strain relief to the connections on TI . Cord protecting grommet fits in
slot in edge of side of cabinet's bottom plate.

You can earn more money if you get an FCC License

and here's our famous CIE warranty that you will get your license if you study with us at home

NJot satisfied with your present income? The most practical thing you can do about it is "bonc up" on your electronics, pass the FCC exam, and get your Govermment license.
The demand for licensed men is enormous. Ten years ago there were about 100,000 licensed communications stations, including those for police and fire departments, airlines, the merchant marine, pipelines, telephone companics, taxicabs, railroads, trucking firms, delivery services, and so on.
Today there are over a million such stations on the air, and the number is growing constantly. And according to Federal law, no one is permitted to operate or service such equipment without a Commercial FCC License or without being under the direct supervision of a licensed operator.

This has resulted in a gold mine of new business for licensed service technicians. A typical mobile radio service contract pays an average of about $\$ 100$ a month. It's possible for one trained technician 10 maintain cight to ten such mobile systems. Some men cover as many as fifteen systems, each with perhaps a dozen units.

Coming Impact of UHF

This demand for licensed operators and service technicians will be boosted again in the next 5 years by the mushrooming of UHF television. To the 500 or so VHF television stations now in operation, several times that many UHF stations may be added by the licensing of UHF channels and the sale of 10 million all-channel sets per year.

Opportunities in Plants

And there are other exciting opportunities in aerospace industries, electronjes manufacturers, telephone compa nies, and plants operated by electronic automation. Inside industrial plants like these, it's the licensed technician who is always considered first for promotion and in-plant training programs. The reason is simple. Passing the Fed eral government's FCC exam and get-
ting your license is widely accepted proof that you know the fundamentals of electronics.
So why docsn't everybody who "tink ers" with electronic components get an FCC License and start cleaning up?

The answer: it's not that simple. The government's licensing exam is tough In fact, an average of two out of every three men who take the FCC exam fail.

There is one way, however, of being pretty certain that you will pass the FCC exam. And that is to take one of the FCC home study courses offered by the Cleveland Institute of Electronics
CIE courses are so effective that better than 9 out of every 10 CIE-trained men who take the exam pass it... on their very first try! That's why we can afford to back our courses with the iron-clad Warranty shown on the facing page: you get your FCC License or your money back.

There's a reason for this remarkable record. From the beginning, CIE has specialized in electronics courses designed for home study. We have developed techniques that make learning at home easy. even if you've had trouble studying before.

In a Class by Yourself

Your CIE instructor gives his undivided personal attention to the lessons and questions you send in. It's like being the only student in his "class." He not only grades your work, he analyzes it. And he mails back his corrections and comments the same day he receives your assignment, so you cant read his notations while everything is still fresh in your mind.

Mail Card for Two Free Books

Want to know more? The postpaid reply card bound-in here will bring you free copies of our school catalog de scribing opportunities in electronics, our teaching methods, and our courses, together with our special booklet, "How to Get a Commercial FCC License." If card has been removed, just send your name and address to us.

Matt Stuczynsh Senlor Transmitter Operator, Radio
Station WhOE
"I give Cleveland Institute credit for my First Class Commercial FCC License. Even though I had only six weeks of high school algebra, CIE's AUTO-PROGRAMMED ${ }^{\text {TM }}$ lessons make elecronics theory and findamentals easy. After completing my CIE Course, I took and passed the 1st Class FCC Exam. I now have a good job in studlo operation, transmitting, proof of performance, equipment servicing."

Chuck Hawkins,
Chief Radio Technican, Diviston 12, Ohlo Dept of Highways
'My CIE Course enabled me to pass both the 2 nd and Ist Class License Exams On my first attempt ... I had no prior electronics training either. (Many of the others who took the exam with me were trying to pass for the eighth or ninth time! I'm now in charge of Division Coninunications. It's an interesting. challenging and rewarding job. And incidentally, I got it through ClE's Job Placement Service."

Glenn Horining, Local Equipment Supervisor, Western Reserve Telephone Company
"There's no doubt about it. I owe my 2nd Class FCC License to
 Cleveland Institute. Their FCC Iilcense Course really teaches you theory and fundamentals and is particularly strong on transistors, mobile radio, troubleshooting and math. Do I use this knowledge? You bet. We're installing more sophisticated electronic sear all the lime and what I lcarned from CIE sure helps." Cleveland Institute of Electronics

1776 E. 17th St.. Dept. EX-16. Cleveland, Ohio 44114

Accredited by the Accrediting Commission of the National Itome Study Council, and the only home study school to provide complete coverage of electronics fundamentas plus such up-lo-date applicallons as: Microminiaturization - Laser Theory and Application - Suppressed Carrier Alodulation • Single Sideband Techniques • Logical Troubleshootiog - Boulcan Algebra • Pulse Theory - Iimebase Generutors...and many more.

Cleveland Institute of Electronics

WAIRTRIANTTY

of success in obtaining a Government FCC License

The Cleveland Institute of Electronics hereby warrants that upon completion of the Electronic's Technology. Broadcast Engineering, or First-Class FCC License course, you will be able to pass the FCC examination for a First Class Commercial Radio Telephone License (with Radar Endorsement);

OR upon completion of the Electronic Communications course you will be able to pass the FCC examination for a Second Class Commercial Radio Telephone License:

AND in the event that you are unable to pass the FCC test for the course you select. on the very first try. you will res ceive a FULL REFUND of all tuition payments.

This warranty is valid for the entire period of the completion time allowed for the course selected.

G. O. Allen

- President

Volume 45, No. 3

An up-to-date Broadcasting Directory of North American AM, FM and TV Stations. Including a Special Section on World-Wide Short-Wave Stations

This is the third and last part of White's Radio Log, now published in three parts twice each year. This format presentation enables the Editors of Radio-TV ExperiMENTER to offer its readers two complete volumes of White's Radio Log each year, while increasing the scope of the \log and its accuracy.

In this issue of White's Radio Log we have included the following listings: U. S. AM Stations by Call Letters, U. S. FM Stations by Call I.etters, Canadian AM Stations by Call I etters, Canadian FM Stations by Call Letters and the World-Wide ShortWave Section.

In August-September 1966 issue of RadioTV Experimenter, Volume 46, No. 1, the Log will contain the following listings: U. S. AM Stations by Frequency, Canadian

AM Stations by Frequency. U. S. Television Stations by States, Canadian Television Stations by Location and the World-Wide ShortWave Section. In the event you missed a part of the Log published during the first half of 1966, you will have a complete volume of White's Radio Log by collecting any three consecutive issues of Radio-TV ExperimenTER during the last half of 1966. The three consecutive issues are an entire volume of White's Radio Log that offers complete listings with last minute station change data that are not offered in any other magazine or book.

If you are a broadcast band DXer. FM station logger, like to photograph distant TV test patterns, or tune the short-wave bands, you will find the new White's format an unbeatable and up-to-date reference.

QUICK REFERENCE INDEX

U.S. AM Stations by Call Letters 97
U.S. FM Stations by Call Letters 106
Canadian AM Stations by Call Letters 110
Canadian FM Stations by Call Letters III
World-Wide Short-Wave Stations 112

U. S. AM Stations by Call Letters

C.L. Location KEED Springfield.Eugene, KEEE Nacogdoches. Tax. KEEL Shreveport. La, KEEP Twin Falls, Idaho KEES Gladewater. Tex. WELA Cent
KELD Eulsa, Okla.
KELK Elko. NeV, K. Dak KELP EI Paso. Tex. KELY Ely, Nev.
KENA Mena, Ark.
EN Cheyenne, wyo.
KENI Anehorage, Alaska
KENM Portales, N.Mex.
ENO Las vegas, Nor.
KENR Houston. Tex.
KENT Prescott. Ari2.
KEOS Flagstaff, Ariz.
KEPR Konnevick-RichlandPaseo. Wash. KEPS Eable Pass, Tex
KERB Karmit. TJx. KERC Eastland. Tex. KERG Eugene, Oreq. KERN Bakersfield. Calh
KERV Kerrville. Tex. KESM Eldorado. Springs. Mo. KEST Bolse. Idaho KETO Seattle, Wash. KEUN Eunice. La KEVA Evanston, Wyo. KEVT Tueson, Aria.
KEWB Oakland. Calif. KEWI Topeka, Kans. KEW TOpeka, Kans. KEXO Grand Jure., Colo. KEYD Oakes. N.Dak KEYE Perryton. Tex. KEYL Lond Prairie. Minn. KEYR Ter KEYS Corpus Christ KEYZ Wroviston. N. Dak. KEZY Anahelm, Callif. KFAB Omaha. Nebr. KFAC Los Angeles. Calif. KFAL Fulton.
KFAM St. Cloud. Minn. KFAX San Franeiseo. Calif. KFAY Fayetteville, Ark. KFBB Great Falls., Mon KFBC Cheyenne, wyo. KFBK Sacramento. Calif.
KFGB Redfeld, S. Dak. KFDA Amarillo. Jex. KFDF Van Buren. Ark. KFOR Grand Coulee. Wash. KFEL Pueblo. Colo. KFFA Helena. Ark. KFGT Flagstaff, Ariz. KFM Wichita. Kans. KFIF Tueson, Aric. KFIV Modesto. Calif. KFJB Marshalltown, lowa KFIM Grand Forks, N.Dak KFJZ Ft. Worth. TBx. KFKA Grealey. Colo.
KFKF Belisuue, Wash. KFKU Lawrence, Kans. KFLA Scoll City, Kans. KFLD Floydada. Tex. KFLI Mountain Home, Ida. KFLJ Walsenburg. Colo. KFLW Klamath Falls. Oreo. KFLY Corvallis. Oreg.
KFMJ Tulsa, Okla. 1
1
1
1
1
1
C.L. Location

KFML Denvar, Colo. KFMO Flat River, Mo.
KFNF Shenandoah, low KFNF Shenandoah, dow
KFNV Ferriday, La. KFNW Fargo. N.Oak KFOR Lincoin, Nebr. KFOX Long Beach. Callf. KFPW Ft. Smith. Ark.
KFQD Anchorage. Alaska KFRA Franklin, La, $K c$. KFRC San Francisco, Catif,
KFRO RosenbergeRlehmond, 20 KFRE
Kresno, Calif,
KFRM Kansas City, Mo. 0 KFRO Longview. Tex. 1450 1430 KFS Columbia. Mo. 43 1470
1400 400 KFST Fi. Stockton. Tex. 1430 KFTM Fi, Alorgan, Colo 1240 1920
1460
1230 1230
1450
980
980
1490
490 KFX SamBa, Idaho
KFYO Lubback. Tex.
KFYR Bismarck. N.Dak.
KGA Spokane, Wasn.
KGAF Gainesville. Tex
KGAK Gallup, N.Mex,
KGAL Lebanon, Oren.
KGAR Lebanon, Oren,
KGAS Carthage, Tex

610
610
1270 1590 KGBT Harlingen. Call 30 KGBX Harlingen, Tex. 1410 1230
1580 7
15 790
1590
1440 1440
1490
1240 1590
690 690
910 1440 1230 KGFW Kearney. Nebr. 1220 KGFX Pierre. S. Dak. 1400 KGGF Coffeyville, Kans. 1400 KGHL Billinos. Mont. 690 1450
1450 920
1190 1110
1330

1480

 9001450 610
110 1100 KGL Glenwood Spros., C
1050 1050 KGLU Safford. Ariz. 1310
1240
$15 G M B C$
KGMC Enolulu. Hawail 1530 1530
1380
148 1380 KGMO Cane Girardeau. Alo. 1440 KGMR Jacksonville. Ark. 1580
1070 1360 KGNQ New Braunfels. Tex. KGNE New Braunfels. KGNO Dodge Cily, Kans 60 IKGNU Santa Clara. Ca 30 KGNS Laredo, Tex 1330 KGO San Francisco. Calif. 640 KGOS Torrington, Wyo
1550 KGPC Grafton. N. Oak.
1360 KGRB West Loma, Cal
1450 KGRI Henderson. Tex.
1230 KGRL Bend, Oreg.
1270 KGRS Prinnell. lowa 1310 KGRT Las Cruces. N.Mex. 1930 KGST Fresno, Callf.
1250
1910
KGTN Georgetown. TeX.
K Gonolulu. Hawaii 900 KGUC Gunnison, Colo. 1240 KGUD Santa Barbara, Calf,
1980 KGUL Port Lavaca. Tex.
960 KGVL Greenvilie. Tex. 1450 KGVO M1ssoula, Mont. 1450
1240
KGGVW

KG Belgrade, Mont | 760 | KGW Portland, Orea |
| :--- | :--- |
| 1050 | KGWA Enld, Onla. |

ke. 1990

KGY Olympia. Wash.

KGYN Guymon, Okta. 920 KHAI Honolulu. Hawaii 000 KHAK Cedar Rapids, lowa KHAL Homer, La.
KHAP Aztec, N.M. KHAP Aztec, N.M.
KHAR Anchorage, Alaska KHAS Hastings, Nebr. KHAT Phoenix. Ariz. KHBM Monticello. Ark.
KHBR Millsboro. Tex. KHDN Hardin. Mont. KHEG Hoher Springs, Ark
KHEM Big Springs, Tez. KHEM Big Springs, Te
KHEN Henryetta. Okla. KHEP Phoenix. Ariz. KHER Santa Marla, Callf.
KHEY EI Paso, Tex. KHEY EI Paso, Tex.
KHFH Sierra Vista, Ari KHFH Sierra Vista
KHFY Austin, Tex. KHHH Pampa, Tex. KHIP Albuquerque, N. M.
KHIT Walla walla, Wash. KHIT Walla Walla, Wash
KHJ Los Angeles, Callf, KHJ Los Angeles, Call KHMO Mannibal. Mo. KHOB Hobbs, N. Mex. KHOE Truckee. Callf. KHOG Fayetteville, Ar
KHOS Tucson. Ariz. KHOT Madera, Calif KHOW Denver, Colo.
KHOZ Harrison KHOZ Harrison, Ark
KHQ Spokane. Wash. KHRT Minot, N. D. KHRT Minot, N.
KHSJ Hemet. Calt KHSL Chico, Calif. KHUB Fremont, Nebr.
KHUM Santa Rosa, Callf KHUZ Borger, Tex. KHVH Honolulu. Hawall
KJBE Palo Alto, Callf. KIBE Palo Alto, Callf.
KIBH Seward, Alaska KIBH Seward. Alas K!BS Bishop, Callf. KICA Clovis, N, M.
KICD Spencer, Jowa KICD Spencer, bow
KICK Springfleld. Mo. KICM Golden, Colo. KICO Calexico. Calif.
KICS Hastings. Neb. KICS Hastings, Neb.
KICY Nomo, Alaska KID Idaho Falls, Idaho KIDD Monterey, Calil.
KIDO Boise. Idaho KIEV Glendale. Call KIFG lowa Falls, la KIFW Sitka Alasta KIGO St. Anthony. Ida KIHN Hugo, Okla. Ida. KIHR Hood River. KIJV Muron, S.Dak. KIKI Honolulu. Hawa KはKK Pasadena. Tex KはKS Sulphur. La. KILE Galveston. Tex KiLO Grand Forks, S.Dak. KILT Houston, Tex. KIMA Yakima. Wnsh Kinil Gillette. Webr KIMM Rapid City. S KIMN Denver, Colo. KInO Hilo. Hawai KIMP MI. Pleasant, Tex. KINO Indebendence, Kans
KINE Kingsville. Tex KING Seattle, Wash. KINO Winslow, Ariz KINT EI Paso. Tex.
KINY Juneau. Alaska
K10A Des Moines, towa
klox Bay City. Tex
KiPA Hilo, Hawail KIQS Willows, Calif. KIRO Seattle, Wash. KIRT Mission. Ter KIRX Kirksville. Mo.
KISO Sloux Falls, S.Dak KISI Salina. Kan.
KISN Vancouver. Wash. K!ST Santa Barbara KITE San Antonio. T KITI Clabalis-Centralia. KITN Olympia. Wash. KiUL Garten City, Kans KIUN Pecos, Tex.
KIUP Duranvo, Colo. KIUP Durando. Colo
KIVY Crockett, Tex KIWA Sheldon. lowa KIXI Seattle. Wash. KIXL Dallas, Tex KIXX Provo, Ulah
$K \mid X Z$ Amarillo. Tex KIZZ El Paso. Tox. KIZZ El Paso, Tok,
KJAM Madison. S.Dak. 960 KJAN Atlantic, low

C.L.	Locotion	Ke.
KJA	San	
KJAY	Sacramento, Call	1430
	Mldtand. Tex.	1150
KJGF	Festus, Mo.	1400
KJCK	Junction City,	1420
KJDY	John Oay, Ore.	1400
KJEF	Jennings, La.	1290
KIEM	Oktahoma City, Okla.	800
KJET	Beaumont Tex	
KJFJ	Webster City, low	1570
KJM	Ft. Worth. Tex.	870
KJKJ	Flagstaff. Ariz.	1400
KJLT	North Platte,	0
KJNO	Juneau, Alaska	630
KJOE	Shreveport. La.	14
kJOY	Stockton, Calif	1280
KJPW	Waynesville,	1390
KJR S	Seattle. W ash	0
kJRG	Newton, Kans.	950
KJSK	Columbus. Ne	0
KJWH	Camden.	
KKAL	Denver City,	1585
KKAM	Pueblo, Colo.	
KKAN	Phillipsburo Kan	0
KKAR	Pomona	0
KKAS	Silsbee, Tex.	1300
KKEY	Vancouver.	
KKHI	San Francisco. Calit	1550
KKIN	Aitkin, Minn.	
KkIS	Pittsburg, Call	0
KK1T	Taos, N, Mex.	1940
KKJO	St. Joseph, Mo	0
KKOK	Lomioc. Calif.	0
KKUB	Brownfield, Tex	0
KLAC	Los Angeles. Calif.	570
KLAD	Klamath Falls, Ore	
KLAK	Lakewood. Colo.	0
KLAM	Cordova. Alaska	0
kLAN	Lemoore, Calit.	1320
KLAV	Las Vegas. Nev.	0
KLBK	Lublock. Tex.	
KLBM	La Grande, Or	1450
KLBS	Los Banos, Cal	1330
KLCB	Llbby, Mont.	0
KLCN	Blytheville, A	0
KLCO	Poteau. Okla	1280
KLEA	Lovington. N.Mex	
KLEB	Golden Meadow.	
KLEE	Otturnwa, lowa	1480
KLE1	Kailua, Hawaii	1130
KLEM	LeMars, lowa	0
KLEN	Kllienn, Tex.	
KLEO	Wichita. Kans.	1480
KLER	Orofino, Idaho	
KLEX	Lexington, Mo.	15
KLFD	Litchfield. Mi	1410
KLFF	Mead, Wash.	1590
LGA	Algona, lowa	-
KLGN	Logan, Utah	
KLGR	Redwood Falls, Minn.	
KLIB	Liberal, Kans,	1470
KLIC	Monroe, La.	1230
KLID	Poplar Bluff. Mo.	1340
KLIF	Dallas. Tex.	
KLIK	Jefterson City. M	
KLIN	Lincoln, Nebr.	1400
KLIP	Fowler, Calif.	1220
KL!	Portland. Oren	
KLIR	Denver, Colo.	
kLIV	San Jose, Cal.	
KLIX	Twin Falls, Idah	0
KLIZ	Brainerd. Milinn.	0
KLKC	Parsons. Kans.	
KLla	Leesville, La.	0
	Lubbock. Tex.	
KLME	Laramie, Wyo	1490
KLMO	Longmont. Co	060
KLMR	8 Lamar, Colo.	920
KLMS	L Lincoln, Nebr	
KLMX	X Clayton, N. Mlex	1450
L0	Dgden, Uiah	
kLOA	Ridgecrest, Callf	1240
KLOC	Ceres. Callf.	0
KLOE	Goodland, Kant	
KLOG	Kelso, Wash.	1490
KLOH	Pipestone. Minn.	1050
KLOK	San Jose. Calif.	1170
KLOL	Lincoln. Neb.	1530
kLom	M Lompoc, Calf.	1330
k L00	Corvalls, Ore.	1340
kLoS	Albuquerate. N. M	1580
KLOU	Lake Charles. La.	1580
kLow	V Loveland. Colo.	
KLPL	Lake Providence, La.	1050
KLPM	M Ninot. N.Oak.	1390
KLPR	O Okda. City. Okda.	1140
KLRA	Llitle Rock. Ark.	1010
KLRS	Mountain Grove, Mo.	1360
kLTF	Littlo Falls, Minn.	960
KLTI	Macon, Mo	1560
KLTR	Blackwell. Okla.	1580
KLTZ	Glasgow, Mont.	1240
KLUB	Salt Lake Cliy, Utan	570
KLUC	Las Vepas. Nov.	1050
kLue	Longview, Tex.	1280
KLUV	Haynesville. La.	1580
KLVI	Beaumont. Tox.	560
KLVL	Pasadena, Tex.	1480
LVT	T Leveiland, Tex.	1230
LW	N Lawrence, Kans.	1320
KLWT	T Lebanon, Mo.	1230
Lw	W Cedar Raplds, Iow	

C.L. Location	Ke.	C.L. Location		Location	Ke.	Locatl	Kc.
Ya Hamilton, Mont.		Kofe Pul	50	OR Quincy	70	KRSY Roswell. N.Mex,	30
KLYR Clarksvilie.	1360	K0F1 Kalisn		kpos Po		KRTN	90
KLZ Denver		KOFO Ott	1220	W			
Shenando	${ }_{6} 960$	K0FY San Mateo. ${ }^{\text {cos }}$	1930	W		KRUS R	90
MAD Madill, Okla.	${ }_{1}^{650}$	K0GO San Diogo.	600	KPRB Redmond. Or	1240	\times G	
KMAK Fresno. Ca	1340	KOGT Orange. Tek.	00	KPRGC Houston, Tox	50	KRVC As	50
KMAM Butler. M		KOH Re		KPRK Livingston, Mo		KRVN L	
KMAN Manhattan, Kans.	13		16	KPRL Paso Robl	1230	KRWB Rosea	
KNAA Maquoketa, Io	1320	KOHO Honolulu, Hawal	1170	KPRM Park Ra	1240	KRXK Rexbur	30
MAR Winnsboro,		KOHU		KPRO Riversite Ca	1450	KRYS	
MASC Shelton. Wa	1280 980	K0	1290 370			KRZE	
MBL Jansas	1450	KOJM H	610	KPST Preston. Idaho	1340	KRZY AI	
MBY Monterey, C		KDKA	15	KPTL Car		KSAC Manhattan.	30
Co Fairfield.	1570	KDKE		KPUA Hilo. Hawa	970	KSAL Sa	
KMCL McCall, ida	1240	KOKL Ok	1240	KPUB, Pueblo.	1480	KSAM H	
KMCM Mcminnville.	1260	k0kO Warrenshurg.		KPUG Be		KSAY San Franciseo, Callf.	
KMCD Conroe.	90	K0kX Keokuk. lowa		${ }_{\text {KPUY }}{ }_{\text {Klu }}$	50	KSCB LIU	1380 600
${ }_{\text {KMODO }}^{\text {KMEO }}$ K. Scoft, Kans,	1600			Kocy ${ }^{\text {kut }}$			
KMEO Medford, Oreg. KMEL Wenatchee, Wash.	$\begin{aligned} & 1440 \\ & 1340 \end{aligned}$	$\begin{aligned} & \text { KOL Seal } \\ & \text { KOLO } \end{aligned}$	[1300	KOCY Quincy. C KQEN Rosehurg	1370 1240 1230	KSCD	${ }_{80}$
MEN San Bernardino,		KOLE Port Arthur.	1340	KQEO Albuquer		KSO St.	50
Califo	1290	1\%0 ${ }^{\text {a }}$	50	Kalk Lakeview. O		KSON Atherdsen. S.	930
ER Kenımerer, W		${ }_{\text {KOLM }} \mathrm{KOL}$		KQMS Redding. KOOT Yakima.	1400	kSOO San	${ }^{30}$
MHL Marsh	14	K0L	00	KORS Golden Valley.		KSEE Sa	80
MIL Camero		kOLS Pryor	1570	<ate mis		KSEI Po	30
Gr			21				析
Porta	1050	KO	00	kawb		KS	50
KMJ Fresno, Calif.	1	KOMA Ok		kax Ar		ISSEN She	\%
MJ Grand İsland.	750	KOMO Seattle, W	00	硡	70	KSEO Ourant. Ok	750
MMO Marshallo Mo.	130	KOMW Omak. W		KRAO E. Grand Forks.		KSET EIP	40
KMNS Sioux city	620	KOMY Watsonville. Ca	40	KRAF Reedsplort. Ore.	0	KSEW S	00
NO Tacoma.	1360	KONA Kealakekua. Hawai		KRAI Craig.			30
MON Great Falls, M	560	KONE Reno. Nev.	1450	KRAK Sacramento		${ }_{\text {KSFA }}^{\text {KSF }}$	40
MOP Tueson.	1330 1230	KONG Visalia.	1480	KRAL Ray	0	${ }_{\text {KSFO }}$	
K M OX St. Loul	1120	KONO San Antonio		KRAN Morton. ${ }^{\text {rax }}$	80		
MPC Los And	710	KONP Port Angoles	1450	KRAY Amarlilo.	1360	KSGT Jack	40
Sikes						<SHA Med	
MrC		K00L Phoenix. A		KR	70		20
REE Anderson. Cal	588	K000 Omaha.	${ }_{1}^{1420}$	KREN St. Peter. Min	1310	KSIG Crowley. La.	40
MSL Morris. Min	1250	K00S Coos KOPR Butte.	+1230	KRCB Council Bluft	$\begin{array}{r} 1450 \\ 1360 \end{array}$	KSIL Silver City. ${ }^{\text {N.Mex. }}$	440
muleshos.		KOPY Allice. Tex.	1070	KRCK Ridgecrest. Calif.	1360	KSIM SIk	400
MUS Muskopee. Ok	13	KOAT Bellingham. W	1550	KRCO Prineville. Orea		KSIR Wichita. Ka	00
KMVI Wailuku. Haw		KORA Bryan. Tex		K		KSIS Weda	50
YG Marysulte Callt	1410	K0RC Mineral Wells, Tex.	11	KROG Redating, Calit.		kSIX Corn	30
NAF Fredericksburg, Tex.	910 1280	KORO Pasco. KORE Eugene.	910 1450	KROO Colo. Snrings. KROR Gresham, Oro.			1230
<NALL Victoria.	1410	kORK Las vega	1340	KROS Tolleson, Ariz.	30	KSKI Sun	1340
KNBA Vallejo.	90	KORL Honotulu. Hay	650	Krou Dinulia. Calif.	40	KSKY Oa	
tor			1490	EB Shreveport. La		KSL Salt La	${ }^{60}$
Now		KORT Grangeville.		KREP arnale. La	00	ks	0
${ }_{\text {KNBY }}$ KNE Compord	1280	${ }_{\text {KOSA }}^{\text {Kodes }}$		KrEk Samuta. Ok	1550	KSLV Monte	4
NCM Mober	1230	KOSG Pans	1500	KREL Corona. Cal.	1370	KSLY San Luls Obispo. Cal.	
NCY Nebra	140	Kosi	1430	KREN		"SMM Santa	
Di Honolutu, Hawall	127	K08Y Texarka	790 1380	KREN Renton,	1420 1400	KSMN Mason C	1010
kNOY Marys	1570	k0		KREW Sunnyside. Was	1230	KSMO Sa	40
Jones	970	k0		KREX Grand lune. Co	920	KSNN Poo	290
Seottstuft			,	KRFO Owatonna. Nin	1390 1600	KSNY Asp	1260
KNEEL Brady, T		KOVC Valley City.	1490	KRGI Grand Isiant	30	kS	1460
KNEM Nevada.	1240	kOVE Lander. Wyo		KRGV Weslase.	1290	KSOK Arkansas Clity. Kans.	
ET Palest	1450	knvo pravo.		KRHD Duncan Okla.		KSOL San Franeliseo. Cal.	
NEW Snokane. Was		K0	1290	KR18 Mason City, low	190	KSON San ologo, Calif.	1240
NEX McP	1540			${ }^{\text {KRIGA }}$ Otessa. Tex	1410	Ksoo s	
KNEZ Lomnoc. Cal	930	KOWN Escontido. ${ }^{\text {co }}$	14	KR1K Roswell ${ }^{\text {K }}$ N. M	9960	KSox Ray	1240
KNGS Hanford Cal	6620	KOXR Oxnard. Calif.	910	kRIO meallen. Tex.	910	KSPA Sa	1400
${ }_{\text {KNIA }}$	1320	KOY Phoenix. Ariz.		KR		KSP1 Stit	
NiC W	1550	KOYN Bilis	910	kRic king ciry. Calif	14	${ }^{\text {KSPL }}$ S	
NIM Maryvilie. Mo.	580	korn Bil	910	KRKO Los Anoeles.	1380	${ }_{\text {KSPT }}$	
KNIT Abitera. Tex.	1980	k0Z1 Chelan		KRKT All		KSRA Salmon. Ida	
KNLV Ord. Neb.		KOZY Grand Ra	1490	KRLA Pasadena. Call	1110	KSRC	
KNVD Cottage Grove O	14	KPAC P	$\begin{array}{r}1250 \\ 1450 \\ \hline 15\end{array}$	KRLC Lewiston, Ida.		KSRO Sa	
KNOC Natchitoches, KNOE Monroe, La.	1450 540	KPAL Palm Snrim	1410	KRLO Dallas, T		KSSS Colorado	
OG Nogn	1340	KPAN Hereford.		KRLN Canon Cit	1400	KS	
KNOK Ft.		KPAS Banning. Callf	140	KRLW Walnut Ridge, A		KSTA Coleman.	
NOP N. P	14	KPAT Ber	1400	KRMD Shrevepo	1340	KSTB Breck	
NOT Prese		KPBA Pine		KRML Carmel, Calit,	1410	KSTN Stockton, Calif.	20
OW ${ }^{\text {a }}$	1490	${ }_{K P}$	774	KRMO Monett, Mo.		KSTP St. Paut. min	
OX Grand Forks, N.Dak			15	KRNMS Osage Beech, Mo.	1150	KSTR Grand Junttion. Col	
k	13	KPCN Grand Prairie.		KRNO San Bernardino. Calif			
U) New	${ }_{860}$	${ }_{K P}$	13		1230	ksiln Cod	-
UZ Housto	2	Sokane		KRNT Des Moines. How	1350	D W. Memphis. Ark.	30
WC sloux	1270	KPEL La	1420	KRNY Ke		KSUE Susanvilie. Catif.	1240
KNWS W	1090	KPEP San Andelo. Tex.	1420	${ }^{K}$ ROB ${ }^{\text {R }}$		KSUn Fairmont. M1	
KNX Los Angelas, KOA Denver. Colo.	1070 850	KPER Gilroy. Calif.	1290	KROO EIPaso. Tex		K	80
KOAC Corvallis. 0	350	KPGE Page, Ariz.	1340	KROE Sheridan, wyo.	0	KSVN	90
KOAD Lemoore. Calif,	1240	KрНо	910	KROF Abbeville.		KSVP Artesia. N.Mes	
KOAG Arpyo Grande. Cal.	1280 1230	KPIK Colorado Spros.. Colo.		KRRP Arawley. C	13	KSW ${ }_{\text {K }}$ K A	40
KOAM PIItS		KPIR Eusene. Wash.	15	KROW Dallas, Or	1460	kswo Lawton. Okla	
KOB Albuque	1770	KPLC Lak	147	KROX Crookston.	1260	KSXX Salt Lake CIty, Utah	
K08E Has Crues, N.Mex	14	${ }_{\text {KPLY }} \mathrm{KPR}$	12	KRPPL Moseow. INan	1400	KSYL Alekandri	970
KOCA Klloo	1240	KPMC Bal	1560	KRRR Ruldoso. N. Mex	1340	KSYX Santa Rosa, N.Mex.	420
Cr ${ }^{\text {O }}$	1340	N	150	KRRV Sherman. Tex	910	KTAC Tacoma. Wash.	850
Pa				KR	1570	KTAE	1260
Cod		KPOD Creseent City, Callf.	1	${ }_{\text {KRSS }}$			
Cod		Denver. Colo	970	S	340	KTAT	
,	40)	1330	kRSL	990	кTBb Tyler, Tox.	
a	950	KPOL Los Angeles, Calir.	1590	KRSN Los Alamos. N . Mox.	1490	stin,	690

		C.L	Ke.	C	Ke.	ation	Ke.
D Δ		WEIC Charleston, III. WEIF Moundsville, W. Va.	1270	WFGW Black Moun	1010	WGKv Charleston. W. Va. WGL Fort Wayne. Ind.	$\begin{aligned} & 1490 \\ & 1250 \end{aligned}$
		WEIM Fitchburg, Mass.	1280		980	WGLB Port Wash., Wis.	1560
		WEIR Weirton. wEIS Center, Ala.	1430	WFHK Pell City. Ala. WFHR Wis, Rapids, WI	$\begin{aligned} & 1430 \\ & 1320 \end{aligned}$	W	$\begin{aligned} & 90 \\ & 90 \end{aligned}$
		WEJL Scranton,	630	WFIA Louisville, Ky.	900	WGMA Hollywood, F	1320
		WEKR Fayettevill	1240	WFIF Milford	1500	WGML Hinesvill	990
		WEKY RIchmond, WEKZ Monroe.	1340	WFIG Sumter	1290	WGMM Millit	1380 570
		WELB Elba, A	1350	WFIN Findiay.	1330	WGN Chieas	$\begin{aligned} & 570 \\ & 720 \end{aligned}$
Location	Kc.	WELC Welch. W.	1150	WFIS Fountain Inn	1600	WGNC Ga	1450
		WELD Fisher. W.	690	WFIV Kissimmee,	1080	WGNE Panama City	
		WELES. Daytona. F	1590	WFIW Fairfeld, lit,	1390	Beach. Fla.	1480
DIC Clinehco.		WELI New Hav WELK Charlo	$\begin{array}{r} 960 \\ 1010 \end{array}$	WFISN Franklin.	$\begin{aligned} & 1450 \\ & 1220 \end{aligned}$		
DIG Dothan.	1450	WELM EImira,	1410	WFKY Frankfort. Ky	1490		0
DIX Orangebur	1150	WELO Tupelo. Miss.	580	WFLA Tampa, Fla.	970	WGNS	0
M	16	WELP Easley, S.C.	1360	WFLB Fayetteville.	1490	WGNU Granite City. III.	920
		WELR Roanoke. Al	1360	WFLI Lookout Mtn	1070	WGNY Newburgh. N.Y.	1220
WOKN Dickson,	120	WELS Kin	1010	WFLN Philadeloh	900	WGOE Richmo	1590
		WELV Ell	137	WFLO Farmville.	8	WGOG Wathal	100
-		WELW	1330				
OLR Delawa	1550	WELZ Eiy, Minn.	4450		1360		
DLM E. Molline	960	,	$\begin{aligned} & 1460 \\ & 1420 \end{aligned}$	WFMC Guldsboro. N.C.	$\begin{array}{r}7360 \\ \hline\end{array}$	WGOL ${ }^{\text {W }}$	1300 1400
DLP Panama City. F	590	WEMD Easton.	1460	WFMD Frederlck. Md.	930	WGOO Georgetown. S.	1470
W0LT indianala.	13	WEMJ Laconia, N.H.	1490	WFMH Cullman. Ala	1460	WGOV Valdosta,	0
DMG Douplas. G	860	WEMP Milwauke. W	1250	WFMl Montgomery. Ala.	1500	WGPA Bethichem. P	
WOM Marquette. Mich	1320	WENC Whiteville. N.C.	1220	WFMJ Youngstown, Ohio	1390	WGPC Albany. Ga.	14
WOMS Lynenburg. Va.	1320	WEND Ede	1580	WFMO Fairmont. N.C		WGR Buffato	
WDMV Pocomoke clity, Md,	5	WENE End	1430	WFMW Madisonvillo.	730	WGRA Cairo,	
DNC Durhan!. ${ }^{\text {N, }} \mathrm{C}$.	620 1240	WENG Engl	1530	WFNC Fayetteville.	0	WGRD Grand Ra	
WONG Anniston. Ala.		WENK Union	1240		0	WGR1 Griffin. Ga.	1410
OONT Dayion, Tenn	1280		1430	WFOM Marietta, Ga.			
DOB Canton.	1370			WFOR Hat	1400	W	
DOC Prestonsbu	1310	W	1230	WFOX Alilwau	860	WGRV Gre	0
WDOD Chaftan	310	WENZ Highl		WFOY St. Augus! ${ }^{\text {W }}$	240	WGSA Ephr	1310
WDOE Dunkirk	410	W	1450	WFPA Fort Payne,	1400	WGSB Geneva. 111.	
wook Cleveland	1260	WEOK Poughkeensie.	1390	WFPG Atlantic City, N.J	1450	WGSm Muntington,	0
DOL Athens, ${ }^{\text {d }}$	1470	WEOL Elyrla. Ohio	930	WFPM Fort Valley, Ga.	1150	WGSR Mllien, Ga.	
R Sturdeon Bay, w		WEPG S. Pittsbur		WFPR Hamm	1400	WGST Atla	0
OS On Oeonta. N.Y.	730	WEPM Mar	1340	WFRA	1450	WGSV Gun	
OOT Burlínoton.		WERA	1590		560	WGSW Gre	1350
Dov Dover. De	1410	WERB Garden C	8900	WFRL Freeport. INI.	1570		
W00w Oowaja	1440	WERE Clevcland. Ohio	1900	WFRM Cou	0		
OQN DuQuoln,	1580	WEPH Han	970	WFRO Fremont. Ohlo	90	WGT	590
DRC Hartord.	1360	WERI Westerly. R.I	1230	WFRX West Frankfort, III.	1300	WGTN Georgetow	1400
		WERK Munc		WFSC Franklin. N.C.	1050	WGTO Cypress Gar	
WOSG Dyersiburg.	1450	WERL Eagle River, Wi	0	WFSG Bota Raton. FI		WGUL New Por	
W DSK Cleveland,	10	Van Wert, Ohio	0	WFSO Pinellas, Fla.	570	Ata	
WDSL Mocksville,	20	WERX Wyoming.	1530	WFSR Bath, N,Y.	80	Ga	1010
DSM Supe	10	WESA Charleroi,		WFST Caribou. Maln	0	S North Augusta, S.C	
DSP		WESB Bradf	0	WFTC Kinston, N.C	960	WGUY Bangor, maln	
		WESC Greenville,	660	WFTG Landon. Ky.	4000	WGVA Geneva, N.Y.	1240
DSR Lake City, Fla.	340	WESO Southbrid	970	WFTL Ft. Lauderdale, FI	1400	WGVM Greenville,	
DUN Gainesville. Ga.	240	WESR Tasley, Va.	1330	WFTM Maysvilie. ${ }^{\text {SH }}$	1240	WGWC Solmu Ai	1340
OUX Waupaen. Wi	800	W EST Easton,	1400	WFTN Franklin, N, H.	1240	Ash	
DUZ Green Bay,	1400	WESX Salem, Mas	1230	WFTR Front Royal.		Sehenectady. N	810
OVA Danvilie, Va.	1250	WESY Leland.	1580	,			
DVH Gainesville. F	980	WETB Johnson Clty	790		1260	W Fou	1430
OVL Vineland. N	1270	WETC Wendell		WFUL Fu	1270	WHA Madis	
WOWD Dawson.	990	WETH St. Augustine.	1420	WFUR Grand Raplds. Mich.	157	WHAB Baxley, Ga.	
OWS Champaion.		WETO Gadsden	030	WFVA Fredericksburg.	1230	WHAG Halfway. Mol.	
WDXB Chattanoona. T	1490	WETT Ocean City, Mid.	1590	WFVG Fuquay Suros., N.C.		WHAI Gree	1240
OXE Lawrenceburg,	1370	WETU Wetumpka, Ala,	1250	WFWL Camden. Tenn.	1220	Rog	
WDXI Jackson, Ten	1310	WETZ Now Martin		WFYC Alma, Mich.	1280		
DXL Lexinoton, T	1490	West	1330	WGAA Cedartown. Ga	1340		
DXN Clarksville. ${ }^{\text {T }}$	540	WEUC Ponce, P.R.	1420	WGAC Augusta. Ga		WHAN Haines CI	0
(er Paducah. k y,	1240	WEUP Huntsville.	1600	WGAD Gadsden. Ala,	1350	WHAP Hopewell.	
DYX Buford, Ga.	1460	WEVA Emporia.	860			WHAR Clarksburg, W.	1340
DZ Decatur, 111.	1050	veleth.	1330	wal elzabat	1490	WHAS Lo	
G Gree		WEW St. Lonis.	770	WGAN Portland, Maln	60		
C Gafi	0	WEWO Laurinburg	1080	WGAP Maryville. Tenn.	1400		
AD College Park.	1470	WEXL Royal Oak.	1340	WGAR Cleveland On	1220		
EAG Alco	1470	WEXT W. Hartford.	1550	WGAS S. Gastonia, N.C	1420	WHB Kansas City.	710
		WEYE Sanforal N	1290			WHBB Selma, Ala.	1490
AM Arlington. Va.	1390	WEYY Talladega. A	1580	WGAW Athens. Ga	1340	WHBC Canton. Ohi	1480
WEAN Providence.	790	WE2E Boston, Mass.	1260 1440		1240	WHBF Rock Island. IIt.	1270
WEAS Savannah, Ga.	900	WEZJ	1440 1300	WGBC Cheevort. N.	1240	WHBG Harrisonturg. Va	1360 1330
WEAT W. Palm Beach, Fla.	850	WEZY Cocoa, Fla.	1350	WGBF Evansville. Ind.	1280		0
EAV Platisburg, N,Y.	60	WEZ Cocoa. Fra.	570	WGBG Greensboro. N.C.	1400	BN Harrodsburo. Ky	
EAW Evanston, III.	1330		820	WriBI Scranton. Pa.	910	Q Memphis, Tenn.	560
WEBB Baltimore, Atd.	1360		990	WGBR Goldslioro, N.	1150	WHBT Harrlman. Tenn.	
WEBC Duluth, Minn.	360	WFAG Farmville, N.C.	1250	WGBS Miami. Fla.	0	WHBU Anderson, Ind.	240
EBJ Brewton,	1240	WFAM Alllance Ohio	1310	WGCB Red Lion. Pa	1440	WHBY Appleton. W is.	
EBO Owe	1330	WFAI Fayettevilite, N.C.	1230	WGCD Chester. S.C.	1400	WHCC Waynesville. N.	400
EBG Harrisburg.	1240	WFAR Farrell. Pa.	1470	WGCH Grennwich. Conn	1490	W HCO Sparta, IIf.	1230
EBR Buffalo. N.Y	970	WFAS White Plains, N.Y.	1230	WGCM Gulfnort. Miss.	1240	WHCQ Sthartanburg, S.C	
EBY Mliton, Fla.	1330	WFAU Augusta. Me. Wir	1340	WGEA Geneva. Ala.	1150	WHCU Ithaca, N,Y.	870
ECL Eau Claire. W	1050	WFAlv Ft. Atkinson. W	940	WGEE Indianamolis. Ind	1590	WHDF Houchton. Milc	1400
EDC Chicaso, 111.	1240	WFAX Fals Chu	1220	WGEM Quincy. III.	14.0		
EDO Mekeesport. P	810	WFBA San Sebastion. P.R.	1460	WGET Gettysburg, Pa.	1320	WHDL Olean. $\mathrm{N} . Y$ Y.	450
EEB Southern PInes. N.C.	990 1300	WFBC Greentille, S.C.	1330	WGEz Beloit. Wis.		WHDM MeKenzie.	1440
EED Racky Mount, N.C EEE Ronsselaer, N.Y.	1390 1300	WFBF Fernandino		WGFA Waiseka, III. WGFS Covington.	$\begin{aligned} & 1360 \\ & 1430 \end{aligned}$	WHEB Portsmouth. N.H.	750
EEF Hjohland Park. If.			1290	WGGA Galnesvilie.		WHEC Rochester. N.Y	1460
EEI Boston. Mass.	$59 n$		1390	WGGG Gainesville.	1230	WHEE Martinsville V	370
EL Fairfax. Va.	1310	WFBM Intlanapolls.	1260	WGGH Marlon. 111.	1150	WHEN SVracuse, ${ }^{\text {W }}$	
EN Lafayette. Tenn,	1460	WFBR Baltimore. Md	1330	WGGO Salamanes, N.Y	1590	WHEO Stuari, ${ }^{\text {Wa, }}$	1310
EEP Pittsburgh, Pa.	1097 1570	WFBS Spring Lake, N, C.	1450	WGH Newport Nows, WGMC Clayton, Ga	1310 1570	WHER Menphis.	1430
ER Warrenton. Va.	1570	WFDF Flint. Mich.	10	WGMC Clayton, Ga.	1570 1150	WHEW Riveria B	
EET Richmond, Va.	1320	WFDR Manchester. Ga,	1370	WGHM Skowegan. Mai	$\begin{aligned} & 1150 \\ & 1370 \end{aligned}$	WHFB Benton Harb	
EEU Rending. Pa. EEW Washington. N.C.	1320	WFEA Manchester. N.H.	1370	WGHQ Kingston. N .	${ }^{920}$	Josenh. Mic	1060
EEX Easton. Pa.	129n	WFEB Sylaeauga. Ala.	1340	WGIG Brunswick. Ga.	1440	WHGR Moughton L.: Mla	290
Ez Chester, P	1590	WFEC Harrishurd. Pa.	400	WGIL Galesturg. III.	1400	WHHH Warren, ohio	1440
go Coneord. N.C	,	WFFF Columblia. Miss.	1360	WGIR Manchester. N.H	610	WHHL Holly Hill. S.C.	40
EGP Presque iole, Maln	1390	G Marathon. F	1300	WGiv Charlotte. N.C.	1600	HT Lucedale. mlss.	1440
H Elmira Heiohts. Horseheads, N.		M Fitchburg. Nass N Gaffiey, S.C.	$\begin{array}{r} 960 \\ 1570 \end{array}$	WGKA Atlanta. Ga. WGKR Perry. Fia.	$\begin{aligned} & 1600 \\ & 1310 \end{aligned}$	WHHV Hillsville, Va. WHHY Montgomery, Al	1400

C.L. Location	Ke.	Lacation	Kc.	C.L. Location	K	Location	Re.
WHIE	20	W	820	WJCD Ja	1510	WKEI Kewanee, III.	0
WHIM Portsm	1400	WIL St. Louis.	1430	WJCW Johnson City, Tenn	0		
WHIL Medford, Mass.	1430		1580	WJDA Quincy, Ma	1300	WKER Pompton Lakes. N.J.	1500
WHIM Providence, R.I.	1110	WILD Eoston, Mass.	1090	WJD8 Thomasville. Ala	630	WKEU Grifin, Ga	
WHIN Gallatin. Tenn.	1010	WILE Cambridoe. Dh	127	WJDX Jackson. Miss.	620	WKEY Co	1340
WHIO Dayton, Ohio	1290	WILI willimantic, Con	1400	WIDY Salistury. Md,	1470	WKFD Wlekfor	0
WHip mooresville, N.	1350	WILK wlikes-Barre. P	980	WJEF Grand Rapids. Mich.	1230	WKFE Yallco, P.R.	1550
WHIR Danvilia. Ky.	1230	WILL Urbana. ${ }^{\text {W }}$ W.	do	WJEH Gallinolis, Ohlo	990	WKFR Battle Creek. Mi	
WHIS Bluefield, W.V	1440	WILM Witmington. O	1450	WJEJ Hanerstown. Mu.	1240	WKGN Knoxvillo. Tenn.	1340 970
WHIT New Bern	1450	WILO Franktort. Ind.	1570	WIEM Valdosta, Ga.	1150	WKHM Jackson. M	0
WHIY Orlando, Fla.	1270	WILS Lans	1320	W JER Dover. Ohio	1450	WKIC Hazard. Ky.	0
WHIZ Zanesville. Ohio	1240	w		WJES Johnston. S.	1570	Wk10 Urbana. IIt.	
WHJB Greensburg. Pa.	620		15	WJET Erle	1400	WKIG GIenville. Ga,	1580
WHIC Matawan.	13	WIMA Lima. Ohio	1150	W JFC Jefferson City, Te	1480	WK1K Leonardtown, Md	1370
HK Cieveland, Ohio	1420	WIMO Win	1300	WJHO Opelika. Al	1400	WKIN Kingsport, Tenn	1320
WHKP Hendersonville, N.C.	1450	WIMS michigan Cit	1420	WJiC Salem, N, J.	1510	WIKIP Pouahkeepsie. N.	
WHISY Hickory. N.C.	1290	WINA Charlottesville, Va.	140	WJG Tullahoma, ${ }^{\text {d }}$	740	WKIS Orlando	0
WHLE Viroinia,	1400	WINC Winchester.	1400	WJIL Jacksonville, 111	1550	Wkix Raleig	0
HLO Niagara Falls,	1270	WIND Chicago. 111.	0	WJM Lansing. Mi	0	WK12 Key	0
HLF South Boston.	1400	WINE Brookneld.	940	wJJC Commerce.	1270	WKJB Mayag	10
HLI Hempstead, N.Y.	1100	WINF Manc	1230	WJJo Chicago. 11.	1160	WKJG Fort W	
WHLL Wheeling. W	1600	WING Oayton, Onio	1410	WJJJ Christhansturg. Va,	1260	WKJK Granit	1580
WHLM Bloomsburg,	1410	WINI Murphysboro.	1420	WJJL Niagara Falls. N.Y	1440	WKJR Muskego	1520
HLN Marlan. Ky,	1410	WINK Fort Myers	1240	WJJm Lewisburg. Tenn	1490	WKKD Aurora, Ill.	1580
HLO Akron, Ohlo		WINN Louisville, K	1240	WJJz Mount Holly, N.J.	1460	WKKO Cocoa. Fla	60
WHLP Centervilie. Ten	1570	WINQ Tampa. Fla.	1010	WILB Oetroit. Mieh	1400	WKKS Vancoburo.	70
WHLS Port Huron,	1450	WINR Binghamton.	80	W JLD Momewood, At	1400	WKLA Ludingt	
HLT Muntington	1300	WINS New York.	1010	WJLE Smithville. T	1480	WKLC St. Alhans.	0
HMA Anniston. Al	1390	WINT Winter Haven.	1360	WJLK Astury Park	1440	WKLF Clanton. Ala,	
WHMC Gaitharsburg,	1150	WiNU Highland Pa	1510	WJLS Beckley. W.	560	WKLK Clonuet. M	0
WHMI Howelt.	1350	WINW Canton. 0.	1520	WJMA Orange, Va.		WKLM Wilminot	
WHMP Northampton, Mass.	1400	WINX Rockville,	1600	WJMB Brookhaven, Mi	13	WKLO Louisville. Ky	0
WHN New York, N.Y.	1050	WINY Putnam, Con	1350	WJMC Rice Lak	12	WKLP Keyser. W. Va	
WHNC Menderson. N.C	890	WINZ Mliaml.	940	WJMO Cleveland Mots.. Ohio	1490	WKLV Black	0
HNY MeComb. Miss.	125	WINU Hightand. 1	1510	WJ MS Ironwood. M		Wkly Hartw	
H0 Des moines. Jowa	1040	WInW Cantoli, Uhio	1520	WJMW Athens. Ala	730	WKLZ Kalamazoo,	0
HOA San Juan. P.R.	870	WiOD Mlami. Fla.	610	WJMX Florence, S.	0	WKMC Roaring S	0
WHOC Philadelphia, M	1490	WIOI New Boston, 0	1010	WJNC Jacksonville	12	WKMF Flint. Mlet	1
H0O Jackson, Ala.	1290	wiok Normal, lit.	1440	WJNO W. Palm Beach. Fla.	1230	WKMI Kalamazoo.	
Whof Canton. Ohio	1060	WION Ionia. Mi	1430	WJOB Mammond.	1230	WKMK Blountstown	0
WHOK Lancaster. O	132	W100 Carlisle. P	1000	WJOE Port Joe, Fla.	1080	WKMT Kinas m	
WHOL Allentown, Pa.	60	Wios Tawas Cily.	1480	WJOI Florenee, Ala	1340	WKNE Keene, N.H	0
WHOM New York. N.Y	1480	WIOU Kokomo. In	1350	WJOL Jollet. III.	1340	WKNR Dearborn.	0
WHON Centervilie,	930	WIP Philadelphia, Pa.	610	WJON St, Cloud. Mint	1240	WKNT Kent, Ohio	
WHOO Orlando. Fla	990	WIPC Lake Wales. FI	1280	WJOR South Haven, Ml	0	WKNX Saginaw. MIc	0
WHOP Houkinsville, K	1230	WIPR San Juan. P.	40	WJOT Lake City, S.C.	12	WKNY Kindst	
WHOS Oecatur. Ala.		WIPS Ticonderona, N.Y	1250	WJoY Burlington, Vt.	1230	WKOA Moukinsvil	1480
HOT Campbell, Ohio	1930	WIRA Ft. Pierce.	1400	WJPA Washington	145	WKOK Sunbury, Pi	
WHOU Moution, Maine	1340	WIRB Enterprise.	0	WIPD Ishpeming.	1240	WKOP Bingham	
WHOW Clinton. III.	1520	WIRC Mickory, N.	630	WJPF Merrin, III.	13	w kov Wellston. Ohio	1330
HP Harrisuerg,		WIRD Lake Placid, N.Y.	920	WJPG Green Bay. Wis.	1440	WKOW Madison. W	
HPB Belton, S.C.	1390	WIRE Indianapolis.	1430	WJPR Greenvilie. Miss	1330	WKOX Framingham. Ma	
Hr'E High Point.	1070	WIRJ Mumboldt. Te	0	WJPS Evansville. In	1330	w kor Bluelield, W.Va.	1240
WHIPL Winchester, Val	610	WIRK W, Palm Beach, Fla,	1290	WJPW Rockford, Mic	1	WKOZ Kosciusko. Miss.	1350
WHRN Herendon, Va.	1440	WIRL Peoria. 13.	1290	wJaS Jackson, Miss.	1400	WKPA Now Kensington.	
WHRT Hartsolle, Ala.	860	WIRO Ironlon. Qhio	1230	WJR Oetrolt. Mich		WKPO Prentiss. Mlss.	1
HRV Ann Arbor. M	1600	WIRV Irvine, Ky.	1550	WJRC Joliet. III.	1510	WKPR Kalamazoo, M	1420
HRY Elizabethtown.	1600	WIRY Platisburg. N	1340	WJRD Tuscalousa. A	1150	WKPT King	1400
HSC Martsville	1450	WIS Columbia, S.C.		WJRI Lenoir	1340	\checkmark Sulliv	
HSL Wilmington, N .	1490	WISA Isabulla. P.R.	1390	WJRL Rockford, 111.	1150	WKRA Holly Springs.	1110
SM Haywa	10	WISE Asheville, N.C.	1310	WJRM Troy.	1390	C Cinci	
WHSY Hattiesburg. Miss.	1230	WISK Americus. Ga.	1390	WJRZ Newark, N.	0	WKRG Mobl	
HTC Holland, Mich.	1450	WISL Shanukin. Pa	1480	W JSB Cresiview. Fla	1050	WKRK Mur	1320
TG Asbury Park-		WISM Madison. Wls	1480	W JSO Jonesboro. T	1590	WKRM Columbla, T	1340
Eatontown. N.J.	1410	WISN Mllwauke ${ }^{\text {d }}$, W	1130	WIIN Jamestown.	1240	WKRO Calro. III.	1490
Wh UB Cookeville. Ten	14	WISO Ponce. P.	1260	WJT0 Bath.		WKRS Waukegan	1220
WHUC Hudson. N.	1230	WISP Kinsion. N.C	1230	WJUD St. Johns, Mich.	80.	KRT Co	
UM	1240	WISR Buller.		WJUN Mexico, Pa.	1220	WKRW Cartersville, Ga.	
WHUN Huntington.	1150	W IST Charlotto. N.C.	1240	WJVA South Bend. Ind	1580	WKRZ Oll City. Pa.	
W HUT Anderson,	1470	WISV VIrouqua. W	1360	WJW Cleveland. Ohio		WKSB Milford, Del.	
HVL Hendersonvillu,	1600	WISZ Giten Burnie. M	1590	WJWL Geordetown. Del	0	KSC Kershaw.	
WHVR Manover.		WITA San Juall. P.R.	1140	WJWS South Hill.	1370	WKSK W. Jeflerson. N.	
WHVW Hyde Park, N.	950	WITH Baltimore. Md	1230	WJXN Jackson. Miss.	1450	W KSN damestown, N. Y	
WHWB Rutland. Vt.	1000	WITL Lansing. Aich.	1010	WIZM Clarksville. T	1400	WKSR Pulaski. Tenn	
WHWH Princeton, N.J.	1350	WITN Washington. N.C.	930	WKAC Athens. Ala.	1080	WKST New Ca	
WHYD Columbus.		WITY Danville, III.		WKA! Macomb. III.	1510	WKTC Charlott	
WHYE Roanoke. Va.	910	WITZ Jasper, ind,	$\begin{array}{r}990 \\ \hline 490\end{array}$	WKAJ Saratoga		WKTG Thomasville.	
WHYL Carlisie.			1490	N, Y.	900	WkTJ Farmington, Mai	
MYN Sprinafield. ${ }^{\text {M }}$	560	WIVI Christiansted, V	970	WKAL Romie, N.Y.	1450	WKTC South Paris. Ma	
WIAC San Juan, P.R.	00	wIVK Knoxville. Ten	850 1370		1460	WKTS Sliehoyoan. Wis.	
WIAM Williamston. N.C.	900	WIVV Vieques. P,R.	1370	WKAN Kankakee, III.	1320	W ITTX Atlantie Beach, Fl	0
WIBA Madson, Wis	,	WIVY Jacksonville. Fla	1050	WKAP Allentown. Pa.	1320	WKTY LaCrosse. Wis.	
WIBB Macoll. Ga.	1280	WIXI Irondalo. Ala.	1480	WKAQ San Juan. P, R.	580	WKUL Cullman. Ala.	340
WIBC Indianapolis. I	1990	WIXK Now Richmond, Wis.	1590 1460	WKAR East Lansing. Mich. W ISAT Miami Beach. Fla	870 1360	WKVA Lewistown. Pa,	920
Wi8G Philadeluhia, P	990	WIXN Dixon, 111.	1460 1520	WKAT Miami Beach, Fla.	1360	WKVK Virginla Beach.	1550
WIB Jackson. Mic	1450	WIXX Oakland Park. Fla.	1520	WKAU Kaukanna. Wis.	1050	WkVm San Juan. P.R.	
WIBR Baton Rouge, La.	1300	WIYN Rome. Ga.	1360	WKAY Glasgow. Ky	1490	WKVT Bratlieboro. Vi.	1490
WIBU Poynette. Wis.	1240	WIZE Springtield. Ohio	1340	WKAZ Charleston, W.Va.	50	WKWF Key West. Fla	
WIBy Belleville. IIt.	1260	WIZR Johnstown. N, Y.	930	WKBA Vinton. Va.	1550	WKWK Wheelina. W. Va	
IBN Topeka. Ka	580 950	WIzS Memterson, ${ }^{\text {N }}$	1450 1250	WKBC N. Wlikestoro, N.C.	14	WKWS Rocky Mount, V	1290
WIBX Utica. N.Y. ${ }^{\text {W }}$	950	WIzz Streator. ${ }^{\text {Ifi }}$ We	1250	WKBH La Crosse,	140	WKXL Concord. N.H.	450
WICC Bridgenort. Conn		WJAB Westbrook. Mo.	1440 850	WKBj Milan, Tenn.	1600	WKXV knoxville. Ter	
WICE Providence, R.I.	1290	WJAC Johnstown. Pa.	850	WKBK Krene. N.H.	1220	WKXY Sarasota. Fla	0
WICH Norwich. Conn.	1310 1400		780 1460		1250 570	WKYC Clevoland, Oh	1100
WICK Scranton, Pa,	1400	WJAK Jackson. Tent	1460	WIBEN Yaungstown. Ohi	570	WKYE Bristol Tenn.	1550
WICO Sallsbury, Md.	1320	WJAM Marion, Ala.	1310		+230	WKYF Greenville, Ky	
WICU Erie, Pa. ${ }_{\text {W }}$ W.	1330	WJAR Providence. R.I.	${ }^{920}$	WKBR Manchester. N.H	1250	WKYN Rlo Piedras, P.R	630
WICY Malone, N.Y.	1490 1400		1320 800	WKBV Richmond, Ind, WKBW Bulfalo.	1490 1520	WKYO Caro. Mich.	1360
WIDE Biddeford, Maine	1400	WJAT Swainsboro. Ga,	800 930	WKBW Bulfalo. N. Y,	1520	WKYR Keyser, W.Va.	1270
WIDO Elizabethton. Tenn	1520	W JAX Jacksonville. Fia,	930	WKBX Winston.Salem. N.C.	1500	WKYX Paducah, Ky.	70
WIDU Fayetteville, N.C.	1600	WJAY Multills, S.C.	1280	WKBY Chatham. Va.	1080	WKZA Kane. Pa.	960
WIEL Ellzatrethown, Ky	1400	WJAZ Albany. Ga.	60	WKBZ Muskegon. Mich.	850	WKZI Cascy. III.	800
WIFE Indianapolls. Ind.	1310	W J B B Haleyvilie. Ala.	1230	WKCT Bowling Green, Ky.	9330	WKZO Kalamazoo, Mich	590
IFM Elkin. N.C.	1540	WIBC $8100 \mathrm{mington} 111.$, WIBD Salem,	1230 1350	WKCU Corinth. Mis	1350 1420	W LAC Nashville. Tenn.	510
IGL Superior. W	970 1430				1820 1240	WLAO Oanthury, Conn.	0
WIGM Medtord. Wi	1430 1340	WJBG Pontiac. Mich. WJBK Oetroit, Mich.	1080 1500	WKDA Nashville WKDE Altavlsta. Va.	1240	WLAF LaFnilette, Tenn	45
GS Gouverneur.	1230	WJBL Holland. Mic	1260	WKDK Newberry, S.C	1240	W LAG La Grande, Ga.	12
$1 / 1$ Homestead. F	1430	WJBM Jerseyville. III.	1480	WKOL Clarksdale, Miss	1600	WLAK Lakeland. Fla.	1430
W IIN Atlanta, Ga.	970	WJBD Baton Roude. La.	1150	WKDN Camien. N.J	800	WLAM Lewiston, Maine	1470
IKC Bogalusa. La.	1490	WIBS DeLand. Fla.	1490	WKDX Hamlet, N, C.	1250	WLAN Lancaster. Pa.	1390
IKE Newport. Vi.	14	W JCD Seymour. Ind. WJCM Sebring. Fia,	1390	WKDZ Cadiz, Ky. WKEE Huntington.	1110	WLAP Lexinaton. Ky	

WHITEE 5 RADTO ட○G

C.L. Location

WLAR Athens, Tenn. WLAS Jacksonville. N.C. WLAU Conway, S.C WLAV Grand Raplds. Mich. WLAW Lawreneeville, Ga. WLBA Gainesville, Ga WLBB Carrollton. Ga. WLBC Muncie. Ind. WLBE Leasburg, Fla, WLBG Laurens, S.C. WLBH Mattoon, ill. WLBI Denham Springs. La. WLBJ Bowling Green Ky WLBK DeKalb. 111 . WLBL Auburndale, W WLER Lebanon. Ky. WLBZ Bangor, Maine WLCB Moulton, Ala. WLCM Lancaster, S.C. WLCN Laurensburg. N.C. WLCS Baton Rouge. WLCX LaCrosse, wis, WLCY St. Petersburg, Fla. WLDB Atlantic City, N.J. WLDS lacksonvilie, ill. WLEA Horneli. N.Y. WLEE Richmond, Va. WLEF Greenwood, Miss. WLES Lamporlumifeva. WLET Toccoa, Ga. WLEW Bad Axo, Mich. WLEY Cayey, P.R WLFA Lafayette, Ga, WLis Shew York. N.Y. WLIL Lenoir City, Tenn WLIP Kenosha, wis. WLIS oid Saybrook, Conn. WLIV Livingston. Tenn. WLK Lake Worth. Fin. WLKN Lincoln, Me. WLKW Providence, R. J^{2}. WLLE Raledoh, N.C. WLLL Lynchburg, Va WLLY WIlson, N.C. WLNC Laurinburg. N.C. WLMJ Jackson. Ohio WLNG Sag Harbor. N, Y. WLNH Laconia. N.H. WLOR Portland, Maine WLOC Munfordville, Ky. WLOD Pompano Beach. Fla. WLOE Leaksville. N.C. WLOF Orlando. Fla. WLOG Logan, W. Va. wLOI LaPorte Ind. WLOK. Memphis, Tenn. WLON Lincointon. N.C. WLOP Jesup. Ga, WLOR Thomasville, Ga. WLOS Asheville, N.C. WLOU Louisvilie, Ky. WLOW Alken, S.C. WLOX Biloxi, Miss
WLPM Suffolk, Va. WLPO LaSalle. III. WLRC Whitehall. Milich WLS Chicago, Ill. WLSB Copper Hili. Tonn. WLSD Big Stone WLSE Wallace, Gap, Va. WLSH Lansford. Pa. WLSM Loulsvilio. Miss. WLSV Wellsville Mich. WLTC Gastonia, N.C. WLTN Littlaton.
WLUN Littlflon. N. H.

Ke.

1450

1450
910
1930
1600 1600
1340 1360 1450 1580 1580
1100 1340
790 790
860 860
1170 I 122
136
133 1360
930
1590 $\begin{array}{r}93 \\ 159 \\ \hline\end{array}$ 1280
620 620
1530 1530
1250 1250
1360 1300 1240 910
1490
1380 1380
1490 1490
180
1840 1380
1480 1480
1450
1480 1480 1240
1580 580 1340 1080
1590 1230 1190
1580 1270
730 730
1050 1360
1420 138
151 145 1450
 1400 930
1350
900 1300
1280 1420 160
1350 a. 1 1490
950

1230 1490

1540
1340
 1330
1050
1370 1370
730 1380
1350 1350
1370 1300
1490 1490 1220
1150 1490
890 1800
1570 12 1400
1410
900
1270 1270
600 790 1370
1370 1370
1400 1400
1520

Ke. 1230
920 C.
W
W
W
W
W WNRK Nowark, Oel,
WNRV Narrows, Va,
WNSL Laurel, Miss.
WNSM Valparaiso.Niceville,
Fiorida 990
1260 WNTN Newton. Mass. Florida 13 1340
1550
1250 WNTT Tazewall, Tenn.
WNUE Ft. Walton Bch., Fla. 1400
WNUS Chicag0 It WNUS Chicago, Ill.
WNUW New Albany, Ind. WNUZ Talladega. Ala.
WNVA Norton.
Wa. WNVL Nicholasvlle, Ky. WNVY Pensacola, Fia.
WNWI Northwestern, WNWI Northwesiern, Ind. $\quad 1230$ WNXT Portsmouth, Ohio 1260
WNYC New Yorik. N. Y. $\begin{array}{lll}\text { WNYC New York, N.Y. } & 830 \\ \text { WNYR Rochester, N.Y. } & 680\end{array}$ WOAH Miami, Fla. WOAI San Antonilo. Tex. 1200
WOAP Owosso WOAP Owosso, Mich.
WOAY Oak Hill w 1080 $\begin{array}{lr}\text { WOAY Oak Hill, W.Va, } & 860 \\ \text { WOBS Jacksonvilie, Fla. } & 1360 \\ \text { WOBT Rhin }\end{array}$ WOBT Rhinelander. Wis. 240 WOC Davenport. Iowa
WOCB W. Yarmouth. Mass $\begin{array}{ll}\text { WOCH North Vernon. Ind. } & 1460 \\ \text { WOCK Okeechobee, FIa. }\end{array}$ $\begin{array}{ll}\text { WOCK Okeechobee, Fla. } & 1570 \\ \text { wODI Brookneal, Va. } & 1230 \\ \text { wODY Bassett, Va. } & 900\end{array}$ WODY Bassett, Va. WOGA Sylvester, Ga. WOHO Joledo, Onio
WOHP Bellefontalnt WOHS Shelby. N.C. Ohio WOI Ames, lowa
wois Sallin. $\begin{array}{ll}\text { Woic Columbia, S.c. } & 1290 \\ \text { wora } & 1320\end{array}$ WOKA Winter Garden. Fla 1600
WOKB Wing $\begin{array}{ll}\text { WOKE Charleston, S.C. } & 1340 \\ \text { WOKK Meridlan. Mlis. } & 1450\end{array}$ WOKK Albany, N.Y. WOkS Columbus, Ga. WOKW Brockton, Mass.
WOKY Milwaukee. Wis. $\begin{array}{ll}\text { WOKZ Alton. III. D.C. } & 1570 \\ \text { WOL Washington. D. } & 1450 \\ \text { WOLD Marlon }\end{array}$ $\begin{array}{ll}\text { WOLD Marlon. Va. } & 1330 \\ \text { WOLF Syracuse, N.Y. } & 1490 \\ \text { W. }\end{array}$ $\begin{array}{ll}\text { WOLF Syracuse, N.Y. } & 1490 \\ \text { WOLS Florence, S. C. } & 1230\end{array}$ $\begin{array}{ll}\text { WOMI Owensboro, Ky. } \quad 1490 \\ \text { WOMN Decatur. Ga. } & 1310 \\ \text { WOMP Be }\end{array}$ $\begin{array}{ll}\text { WOMN Becatur, Ga, } & 1290 \\ \text { WOMP Beltaire, Onio } & 1240\end{array}$ $\begin{array}{lll}\text { WOMT Manitowoc, Wis. } \quad 1240 \\ \text { WONA Winona, Miss, } & 1570\end{array}$ $\begin{array}{ll}\text { WOND Pleasantvilio. N.J. } 1400 \\ \text { WONE Dayton. Ohio } & 980\end{array}$ WONN Lakeland. Fla. 1231 WONS Tallahassee, Fla.

WONW Deflance. Onte. wooo Grand Rapids, Mich. 13 $\begin{array}{lll}\text { WOOF Dothan. Ala. } & 560 \\ \text { WOOK Washington, O.C. } & 1340\end{array}$ wooo Deland, Fla. WOOW Greenville, N.C. 1340 $\begin{array}{lll}\text { WOPA Oak Park, III. } & 1490 \\ \text { WOPI Bristol, Tenn. } & 1490\end{array}$ WOR New York. N.Y. $\quad 790$ $\begin{array}{lr}\text { WORA Mayaguer, } \dot{P} . \text { R. } & 760 \\ \text { WORC Worcester. Mass. } & 1310\end{array}$ $\begin{array}{ll}\text { WORO Spartanburg, S.C. } \quad 910 \\ \text { WORG Orangeburg, S.C. } & 1580\end{array}$ 1260 WORG Orangeburg, S.C. 1580 $\begin{array}{llr}1230 & \text { WORL Boston. Mass. } & 950 \\ 630 & \text { WORM Savannah, Tenn. } & 1010\end{array}$ \begin{tabular}{l|l}
630 \& WORM Savannah, Tenn.

1430 \& WORT New Smyrna Beach,

\multicolumn{1}{c}{ Florida } \& 1550

WORX Madison. Ind. \& 1270

WOSC Fulton. N, Y. \& 1300

WOSH Oshkosh. Wis. \& 1490
\end{tabular} 1400 WOSH Oshkosh. Wis. 1490 1600 WOSU Columbus, Ohio 1320 1340 WOTT Watertown, N.Y. 1410 $\begin{array}{llr}12301 \\ 1230 & \text { WOTW Nashua, N.H. } & 900 \\ 1340\end{array}$ 1290

1540
1290 1540 WO 1430 WOWW Naugatuck, Conn. 1190 $\begin{array}{lll}1480 & \text { WOWY Clewiston. Fla. } & 500 \mathrm{~d} \\ 1510 & \text { WOXF Omiord. N.C. } & 1340\end{array}$ 1350 1590 WPAB Ponce, P.R.
1230 WPAC Patchoque. N.Y
1960 WPAD Paducah. Ky
990 WPAG Ann Arbor,
$\begin{array}{rl}990 & W P \\ 690 & W P \\ 1060 & W P\end{array}$
1060 WPAM Potlsville, P.C.

1270 WPAQ Mount AIry. N.C. 740 1230 WPAT Paterson. N.J. W.V. $\quad 930$ 1260 WPAW E. Syracuse. N.Y. 1540 $\begin{array}{lll}1410 & \text { WPAX Thomasullle, Ga. } & 1240 \\ 1230 & \text { WPAY Portsniouth. Ohio } & 1400\end{array}$ $\begin{array}{lll}1230 & \text { WPAY Portsnouth. Ohlo } & 1400 \\ 1590 & \text { WPAZ Pottstown. Pa. } & 1370 \\ 1250 & \text { WPBC Rlehteld, Minin. } & 980\end{array}$ $\begin{array}{lll}1250 \\ 990 & \text { WPPCC Rlehteld. Minin. } & 980 \\ & \text { WPC Clinton. S.C. } & 1400\end{array}$ $\begin{array}{lll}1450 & \text { WPCF Panama City, Fla. } & 14300 \\ 1280 & \text { WPCO Mit. Vernon. Ind. } & 1590\end{array}$ $\begin{array}{lll}280 \\ 440 \\ 940 & \text { WPPDE PP Paris. Ky. } & 1440 \\ & \text { WPD. }\end{array}$ $\begin{array}{lll}940 & \text { WPPF Corydon. Ind. } & 1550 \\ 380 & \text { WPDM Potsoam. N.Y. } & 1470\end{array}$

U. S. FM Stations by Call Letters

C.L. Location	C.L. Location	C.L. Location	C.L. Location
KABC-FAl Los Anoeles. Calti	KBMC Eugene. Ore.		
KABL-FM San Francisco. Cal	KBMF-FA Spearman. Tex	KCUR.FM	RN-FM Bak
KACA Prosser, Wash.	KBMS Los Angeles. Calif. KBNO Houston. Tex.	KCUR-FM Kansas	KERR Sallinas, Cal. KERS Sacramento. C
is. Alo	A-FM K	KCWS.Fin Elfensburs	KESM-FM EI Oorad
lif.	K BOC		
M Sallina. Kans.	KBOE-FM Oskiloosa.		KETO-FM Seattle, Wash. (s)
IM.FM Honotulu,	KBOI-FM	KDB.FM Santa Barbara,	KEWC.FM Cheney. W KEZE Anaheim, Calit.
New port Beath Tulsa. Okla.	$\begin{aligned} & \text { KBOX-FM } \\ & \text { KBOY-FM } \end{aligned}$	KODD-FM Dumas. KDEF.FM Albuque	KFAB-FM Omaha.
- Ana.	KBPI Oen	K0ES.FM Palm Spgs	KFAC-FM Los Angoles. Call
B-FM Alexandr	K ${ }^{\text {B }}$	KOFC San	,
H Oenver, Colo.	KBRO-FM Bromert	KDEF.FM Albuquer	ay
KALW San Francisco	KBTC-FM Hous		KFBD Waynes
KAMS Mammoth Spr	KBTM-FM Jonestoro,	KDFR Tulare. Cal.	KFBK-FA Sacramento.
KANG Angwit. Cal.	KBUZ-FM Mesa. Ariz. KBVR Corvallis, Ore.	KDHI-FM Twenty-N	KFCA Phoenix. Ariz. KFGQ.FM1 Boone. Iowa
T-FM Lancala	KBYR-FM Anchorade,	KDKA.FAl Pittsburgh.	KFH-FM1 Wichita, Kan
KANU Lawrence. Kans.	KBYU.FA	,	KFFJC Los Altos.
W Albuquer	KCAB-FM Dardan	KDMC Corpus Chr	K
		KDMI Des Moines	KFLA.FM Scott City.
FM Albuquerque.	KCBH Beverly	KDNC.FMI Spokan	
Rock Ark	KCBS-FM San Fran	KONT-FM	KFMB-FM San Diego.
arisbad. Cal.	KCEE-FM Tueson. KCER Redding. Cal	K00K-FM Tyier. ${ }^{\text {K }}$	
	KCER Redding Cal KCFC Kansas City.	KDSU Des Moines,	KFMG Des
KATT Woodland	K		Ho
Y-FM San Luis Oblso.	KCHQ-FM Conehell	k0U0	FM Denver, Colo
KAVI-FM Rocky Ford, Colo.	KCIB-FM Fresno. Cali	KDUX-FM Aberdeen	FMM Tueson. Ariz.
KAVR.FM Applevalley.	KCIL.FM Houma, La	KOVR Sioux City, la. (s)	KFMN Abilenc, Tex.
KAYO Beaumont. Tex. kAZZ Austin. Tex	KCKN-FM Kansas City.	KEAR San Francisco. Call	KFMQ Lincoln,
KBBI Los Angeles. Callf.	KCLO-FM Leavenworth. K	KEBJ Pho	KEMA Fremont. Ca
KBBL Riverside.	KCLU-FM Rolla. Mo.	KEBR Sacramento. Cali	KF MU Glendate, Calif. (s)
KBBW San Diego. Cal	KCiA San rran	KEBS San Diego, Calit	KFMV minneapolis. Minn
K B BX Seatile. Wash.	KCMB-FM Wichita. Kans	KeCR El Cajon, Calit. KEDC-FM Northrldge.	KFMW San Bernardino, Calif. KFMX San Diego, Calit, (5)
KBCA Los Angeles. Callf. KBCL.FM Shreveport	KCMI Los Angeles. Calif. KCMK Kansas City. Mo.	KEDC.FM Northrld KEED.FM Springfe	KFMX San Diego, Calit. (5) KFMY Eupene, Oreg. (s)
EE-FM Modesto.	FM Kansas		KFNB Oklahoma City, OkI
EY Kansas City.	CMS.FM Manitou Springs.	M	E Big Spring
FI Bolse, Idaho	COM Omaha. Nebr.	Waco Tex (s)	NW-FM Fargo. N
FL Bufalo. Mo.	KCPS Tacoma. Wash.	KEFC Waco. Tex. (s)	San Francisco.
FM Lubbock. Tex	alt Lake	KEFA Santa Posa. Cal.	
			RE.FM Fresno.
			N.FA Brownwood.
KBig.Fm Los Angeles. Avalon.	It	ix. Ari	
	U.FM Ft. Collins, C	Sioux Falls. S. ${ }^{\text {D. }}$	dma
BIM.FM Roswell. N. Mex. BLE-FM Seattle, Wash.	WCTS FM Minneapolis. Minn. KCUE-FM Red Wing. Minn.	KELT Marlingen. Tex. KEMO St. Louls, Mo.	KGAF-FM Gainesville, Tex. KGB-FM San Diego, Callif.

C. Locaflon

KGBC-FM Galveston. Tex. KGBI.FM Omaha, Neb. KGEE.FM Bakerstield, CaI. (s) KGEN. FM Tulare. Cal.
KGGK Garden Grove. Calif. (s) KGHO-FM Moquiam. Wash. KGLA Los Angeles, Calif. KGME.FM Centralia, Wash. KGMII- FM Bellingham. Wash KGNC.FM Amarillo, Tex. KGNO.FM Oodge City, Kan. KGO-FM San Francisco, Calif. KGPO Granis Pass, Oreo. KGRI-FM Henderson. Tex. KGUS Hot Springs. Ark KGVW-FM Belgrade. Mont KHAK-FA Cedar Rapids, Lowa(s) KHAR-FM Athehorage. Alaska KHBL Plalnview. Tex. KHBR-FM Hillsboro, Tex. KHCB.FM Mouston. Tex. KHEP.FM Phoenix, Ariz. KHFI-FM Austin. Tex. KHFM Albuquerque. N.Mex.(s) KHFR-FM Monterey. Calif. (s) KHGM Beaumont. Tex. (s) KHIQ. Sacramento, Calit. (s) KHMIS E! Paso. Tex,
KHOB.FM Hobbs. N. M. KHOF Los Angeles, Calif. KHOM-FM Turlock. Calif.(s) KHOZ-FA Harrison, Ark. KHPC Brownwood. Tex. KHQ.FM Spokane, Wash. KHSC Arcata, Calit. KHSJ-FM Hemet. CaI.
KHUL Houston. Tex. KHVH-FM Honolulu. Hawall KHVR Bijou. Calls. KHYI Fremont. Calif. KfCo.Fm Spencer. la. KICS. FM Hastings. Neb. KICN Omaha, Nebr. KIO.FM Idaho Falls, Ida. KIEN Eureka. Calit. KIFG.FM lowa Falls, Ia, KIFM Bakersfleld. Cal KIHI Tulsa, Okla. KIKS.FM Lake Charles, La, KIMN-FM Denver. Colo. KIMP.FM MI. Pleasant. Tex. KING.FM Soattle, Wash. KIOO Oklahoma. Okla. KIRO-FM Seatile, Wash. KISA Kansas City, Mo. KISS San Antonio. Tex
KISW Seattlo. Wash. (s) KITH Phoenlx. ArIz. KITY San Diego, Calif.
KITY San Antonio. Tex. (s) KiXL.F M Dallas, Tex.(s) KL.FM Dalsas, Tex. $K J A Z$ Alameda. Can KJCK. FM Junction City, kan. KJEM.FM Okla. Cify, Okla. KJIM Ft. Worth. Tex. Klu KJLM San Diego, Call. Kjor. FM Burlinaton. Vi KJPO-Fresno, Calis. KJRG-FM Newton, Kans. (s) KJSB Houston. Tex.
KJSK.FM Columbus, Neb. KKFM Colorado Surinos. Colo. KKHI-FM San Francisco. Cal. KKIT.FM Taos. N. M. KKOP Redondo Beach, Cal. KLAC-FM Los Angeles, Callf. KLAK.FM Lakewood. Colo. KLAW Lawton, Okla. KLAY.FM Tacoma, Wash. KLBS-FM Los Banos, Cal. KLCN.FM Blytheville, Ark. KLEA.FM Lovington. N. M. KLEA. Houston, Tex. (s)
KLEF
KLEN, FA1 Killeen. Tex KLGS Los Gatos. Cal KLFM Beverly Hills, Callf. KLIR-FM Denver. Colo KLIZ.FM Bralnerd. Minn. KLJT Lake Jackson. Tex KLMO.FM Longmont. Colo KLOA.FM R/dgeerest, Calif. KLOM-FM Lompoc, Cal. KLON Long Beact, Calif. KLOR-FM Punca City. Okla KLOV-FM Loveland. Colo. KLRO San Diego. Callf. (s) KLSN Seatlle, Wash. (s) KLST Colorado Springs. Colo.(s) KLUB.FM Salt Lake City, Utah KLUE.FM Longview. Tex KLUR wichita falls. Tex KLVI-FA Beammont. Tex. KLVL Pasadena. Tex.

C.L. Locotion

KLWN.FM Lawrence. Kan. KLXN Seatlle, Wash,
KLYD-FM Bakersfeld, Calif. KLYN-FM Lynden, Wash. KLYX Memphis. Tenn. KLZ-FM Denver, Colo. KMAG-FM Ft. Smith. Ark. KMAK-FM Fresno. Calif. KMAP Dallas. Tex.
KMAX Sierra Madre, Calif. KHBC.FM Kansas City, Mo.(s) KMBY-FM Paclific Grove. Cal. KMCP Portland. Ores. KMEO Phoenix, Ariz. (s) KMER Fresmo, Calif. KMET Denver. Colo. KMFM San Antonio. Tex. (s) KM1HT Marshall, Tex, KM1J.FM1 Fresno. Calif KMLB.FM Monroe. La. (s) KMMK Litile Rock, Ark. KMOD.FM Midland. Tex. KMOR-FM Morehead, Ky. KMOX-FM St. Louls. Mo KMPX San Franclsco, Calif, (s) KMISC Clear Lake Clty. Tex KMSM Rolla. Mo
KMSU Mankato. Minn.
KMUL.FM Muleshoe. Tex
KMUW Wichita, Kans
KMYC.FM Marysville, Calif. KMUZ Santa Barbara, Calif.(s) KNBQ Bethany. Okla. KNBR-FA San Francisco. Calif. KNBU Baldwin, Kan.
KNDX Yakima. Wash.
KNEA-FM Jonestoro, Ark. KNEB-FM Scottsbluff. Nebr, KNEO.FM McAlester, Okla. KNER Dallas. Iex.
KNEV Reno. Nev. (s)
KNEW.FM Scotisbluff. Nebr. KNEW. FA Stottsblaf KNFM MIdland, Tox. KNHS Torrance. Cal. KNIK-FM Anchorage. Alaska KNIX.FM Phoenix. Ariz. (s) KNJO Thousand Oaks. Calif.
KNOB Long Beach. Calif. (s) KNOB Long Beach. Calif. (s)
KNOC. FMI Natchitoches. La. KNOC.FM Monroe. La. KNOF St. Paul, Minn. KNOK.FM Ft. Worth. Tex. KNRO. FM M Conror.
KNTO Wlehita Falls. Tex. (s) KNUS Oallas. Tex. KNWS.FM Waterloo, lowa
KNX.FM Los Angeles, Callf. KNX.FM Los Angeles,
KNXR Rochester. Minn. KOA.FMM Diner. Colo. KOAT.FM Albuquerque. N. M KOB.FM Albuquerque. N.M. KOBH.FM Hot Springs. S.O KOCN Newport Beach, Cal. KOCV Odessa. Tex. KOCY.FM Oklahomi City, Okla, KODA.FM Houston. Tex. KOFM Oklahoma city, Okla KOFO. FM Oitawa, Kan KOGM-FM Tulsa. Okia. KOIN.FM Portland, Oreg. KOKH OKlahoma City. Okla. KOL. FM Seatle. Wash. KONG-FM Vlsalia, Calif KOOL.FM Phoenix. Ariz. KOPR.FM Great Falls. Mont. KORA.FM Bryan. Tez. KORK Las Vegas, Nev, KOSE. FM Osceola. Ark. KOSE. FM Osceola, A KOST Dallas. Tex. KOSU.FM Stillwater, Okla.(s) KOSY-FM Texarkana. Tex. KOTN-FM PIne Bluff. Ark. KOWH.FM Omaha. Neb KOWN-FM Escondido. Cal, KOYA Ontario. Cal KOYL.FM Odessa, Tex. KOZE.FM Lewiston. Idaho KPAC.FM Port Arthur. Tex. KPAN-FM Hereford. Tex. KPAT.FM Berkeley. Calif. KPCS Pasadena. Calit KPDQ.FM Portland, Ore. KPEL. FM Lalayetie. La. KPENSAN Francisco. Cal. (s) KPET-FM Laniesa, Tex KPFA Berkcley. Calif. KPFB Berkeley. Calit. KPLC.FM Lake Charles. La KPLT-FM Paris. Tex. KPLX San Jose. Cal. KPFM Porttand. Oreg.(s) KPGM Los Altos, Calis.
KPLR.FM St. Louls, Mo. KPMT Oxnard. Cal. KPO1-FM Honolulu. Hawail (s) KPOJ-FM Portland, Oreg. KPOL-FM Los Angeles. Callf.

C.L Location

KPPC-FM Pasadena, Calif.
KPPS-FM Parsons, Kans.
KPRI San Diego, Call
KPRN Seattle. Wash.
KPRS-FM Kansas City, Mo.
KPSD Dalas. Tex.
KGAL-FM Omaha. Nebr. (s)
KafM Portland, Oreo.
KQIP Odessa, Tex.
KQRS. FM Golden Valley. Minn. Kary Wichita, Kan,
(QUE Houston. Tex. (s)
KQV.FM Pittsburgh.
KRAK.FA1 Stockton, Callf.
KRAK-FM1 Stockton. Calif.
KRAV Tulsa. Okla. (s)
KRAV Tulsa. Okla. (s)
KRBE Houston. Tex. (s)
KRCC Colorado Springs, Colo.
KRCC Colorado Springs, Coll KREB Monroe, La.
KREM.FM Spokane, Wash.
KREP Santa Clara, Cal.
KREX.FM Grand Junction, Colo KRFM Phoenix. Ariz.
KRHM Los Angeles, Callf
KRIL El Dorado, Ar
KRIT Clarion. lowa
KRKD.FM Los Angeles. Calif. KRKH.FM Lubbock. Tex.
KRKY Denver, Colo.
KRLD.FM Dallas. Tex.
KRMD.FM Shreveport, La. KRMGFFM Tulsa, Okla.
KRML.FM Carmel, Cal.
KRMS.F
M Osage Beach. KRNL.FM MIt. Vernon, ia KRNW Boulder, Colo. KRNY-FM Kearney-Holdrege, Nebraska KROC-FM Rochestor, Minn
KRON.FM San Francisco, Callf. KRON.FM San Francas kROW Santa Barbara. Catif. KROY-FM Sacramento. Calit. KRPM San Jose, Calif.
KRRC San Jose, Calli. KRSA.FM Salimas. Cal ©RS1 Ninneapolis. Minn.(s) KRSI.FM St. Louls Park. MInn. KRSL.FM Russell. Kan. KRSN.FM Los Alamos, N, Mex. KRST Albuquerque, N. M. KRUS. FM Ruston, La KRVM Eugene, Oreg. KRVN.FM Lexington, Nebr. KRWG University Park, N. M. KRVS-FM Lafayette. La KRYT.FM Colorado Springs. CSAMCO.
KSAM.FM Huntsville. Tex. KSBY-FA San Luis Obispo, Cal. kSCO Santa Cruz, Callf. KSBW.FM Salinas. Callf. KSOA La Sierra, Callif. KSOB. FM Manhattan. Kans. KSDO-FM San Diedo, Cal. KSDS San Dieqo. Callf, KSEA San Dlego. Calli. KSEL.FM Lubbock. Tex. KSED.FM Durant. Okla KSFM Dallas. Tex. (s) KSFR San Francisco, Calif. (s) KSFV San Fernando, Calif. KSFX San Francisco, Calli. KSGV West Covina, Cal. KSHHS Colorado Springs, Colo KSIS. FM Sedalia, MO. (S) KSJO.FM San Jose. Catif(s) KSJS San Jose. Calli,
KSIT. San Salt Lake City, Utah(s KSL.FM Salt Lake city KSLH St. Louis, Mo.
KSLMA.FM Santa Maria. Calif. KSMB Lafayette. La. KSNM Santa Fe. N. M, Howa KSOM Tueson. Ariz. KSOP. FM Salt Lake City. KSOP-FM Salt (s) KSPC Claremont. KSPI.FM Sinarer, Okla. KSRF Santa Monica. Callf. KSRF Santana, Kan's.
KSTL.FM St. Louls. Mo. KSTN.FM Siockton, Calif. KSTP-FM St. Paul, Minn. KSUI lowa City, lowa KSYN Joplin. A10, (s) KTAC. FM Tacoma. Wash. KTAL Texarkana, Tex. KTAP Tueson, Ariz KTAR.FM Phoenix. Ariz. KTBC.FM Austln. Tex. (s) KTCF Cedar falls, lowa KTCS.FM Fi. Smith. Ark KTEA.FM Midwest Cily, Okla. KTEC Oretech, Oreg.
C.L.

Locatlon

KTFC Sloux Clty, Ia
KTGM Denver, Colo
KTIB-FM Thibodaus. La.
KTIM San Rafael, Calif.
KTIS.FM Minneapolis. Minn.
KTJO-FM Ottawa, Kans.
KTMS.FM Santa Barbara, Cal.
KTNT.FM Tacoma, Wash.
KTOD.FM Sinton. Tex. (s)
KTOP Topeka, Kan.
KTOY Tacoma, Wash.
KTQM-FM Clovis, N, M.
KTRB-FM Modesto, Calif. KTRB-FM Modesto, Calif.
KTRH-FM Mouston. Tex. KTSM.FM EI Paso, Tex. KTSR Kansas City, Mo.
KTTS. FM Springfild, Mo. KTUX Hayward, Cal. KTW.FM Seattle Wash.
KTWN Anoka, Minn.
KTXJ.FM Jasper, Tex.
KTXN-FM Vietoria. Te
KTXR.FM Springfield. Mo.(s)
KTXT-FM Lubbock. Tox.
KUAC College: Alaska
KUID Moscow. Ida
KUDE.FM Occanside, Cellf.
KUDU-FM
Ventura-0xnard, Calif.(s)
KUER Salt Lake Cily, Utah
KUFY Redwood city, Calli
KUGN-FM Eupene. Óres.
KUHF Houston. Tex.
KUKI.FM Uklah. Cal.
KUMD.FM Duluth. Minn
KUNF La Canada, Cal.
KUOA.FM Silisam Springs, Ark
KUOH Honolulu. Hawail
KUOP Stockton, Cal.(s)
KUOR. FM Rediands, Cal.
KUOW Seatte, Wash.
KUPD.FM Tempe, Ariz.
KUPK.FM Garden city. Kan.
KURL-FM Blllinos. Mont.
KUSC Los Angeles. Calif.
KUSU.FM Lioan. Utah
KUT.FM Austin. Tex.
KUTE Glendale. Callf.
KUWS. FA Nowioni ia.
KVEG-FM Las Vegas, Nev. KVEN-FM ventura, Callif. KVFM San Fernando, Calif. KVII-FM Amarllio, Tex. $K V I L . F M$ Highland Park.Oallas,
KVOA.FM Tueson, Ariz.
KVOE.FM Emporla. Kan.
KVOF.FM EI Paso. Tex.
KVOK Honolulu. Hawall
KVOP.FN Plainview. Tex.
KVOR.FM Colorado Sprlags, Colo.
KVSC Logan. Utah
KVWM Show Low, Arlz.
KWAR Waverly, lowa
KW KX.FMg Beatrice. Neb.
KWBU Waco. Tex.
KWDM Des Molnes. la. (s)
KW DM M Minneapolis. MInn.(s)
KWG.FM Stockton, Calif.
KWGN.FM Abernathy. Tex.
KWGS Tulsa. Okla.
KWHGLIM Brenham. Tex
IKWHOFFM Salt Lake Clity, Utah
KWHP Edmond, Okla.
KWIP.FM Merced. Cal.
KWIX St, Louls. Mo.
KWIZ-FM Santa Ana, Callf.
KWJB.FM Globe, Ariz.
KWKC.FM Abllene. Tex.
KWKH.FM Shreveport, La,
KWLM.FM Willmar, Minn.

C.L. Locotion
${ }_{K X T R}^{\text {Kansas City. Mo. (s) }}$ KXYZ. FM Houston. ${ }^{\text {T }}$. M . KXYZ FM Houstone Tex. (s) KYEW Phoentx. ArIz.
KYLM OkIahoma Ciliy, Okla.
KYLEEFM Temple, Tex.
KYSM-FM Mankato, is inn. KYW.FM Cleveland. Ohio
KZAK Tyler. Tex
KZAM Seattio, Wash. (s)
KZFM Corpus Christi. Tex.
K20M Oklahoma City, Okla.
KZSU Staniord. Cal.
KZUN. FM Opportunity, wash.
WAAB.FM Worcester. Mass. WAAM-FA Parkersburg, W.Va-WAAZ-FM Crestview. Fin. WABA.FM Aguadilla, P.R. WABE Atlanta, Ga.
WABF.FM FairhoDe. Ala.
WABa Cloveland. Ohlo
WABX-FM Detroit. MIch. (s) WABZ-FM Albemarlo. N.C. WACO Waco, Tex.
WACT-FA Tuscaloosa, Ala. WAEB. FA Cincinnati, Ohlo WAEF-FM Cinelinnati, 0 WAEZ Mlami Beach. Fla. (s) WAGR-FM Lumberion. N.C. WAGY-FM Forest City. N. C. WAHR Huntsville, Ala. (s) WAIC San Juan, P.R. Walr. FAi Winston-Salem, N.C. WAIV Indianapolis, Ind. WAJC Indianapolis, Ind. WAJM Montgomery. Ala. (s) WAJP Jollet. Ill.
WAJR-FM Morgantown. W.Va.
WAKN.FM Aiken, S.C.
WAKO-FM Lawrenceville. HI.
WAKR-FM Akron, Ohio
WAKW.FM Cincinnati, Ohio WALK-FM Patchogut. N.Y. WAMC Albany. N.Y.
WAMF Amherst, Mass
WAMO-FM Pittshurgh, Pa.
WANG Goldwater, Mich.
WANY-FM Albany. Ky
WAOV-FM Vincennes. ind.
WAPC.FM Riverhead. N.Y.(s)
WAP I-FM Birmingham, Ala.
WAPL.FM Appleton, Wis.
WAPL-FM Appleton
WAQE-FM Towson, Md. (s) WARC Meadville. Pa.
WARK Little Rock, Ark. (s) WARN.FM Fort Plerce, Fla. WARN.FM Fort Plorce WASA.FA1 Havre De Grace. Md. WASH Washington, D.C.(s) WASK.FM Lafayette, Ind WATR.FM Waterbury WAUG.FM Waterbury, Conn. WAUG-F M Augusta, Ga.
WAUP Akron. Ohio
WAUP Akron, Ohio
WAVA.FM Arlington, Va.
WAVO.FM Atlanta, Ga.
WAVU-FM Albertville. Ala.
WAWK-FM Porismouth, V A,
WA WR.FM Bowling Green, 0 .
WAWZ.FM Zarephath, N.j.
WAXO Kenosha, Wis.
WAYL Minneapolis, Minn. (s)
WAYZ-FA Waynesboro, Pa WAZL-FM Hazelton, Pa, WBAA-FM W. Lafayette, Ind. WBAB-FM Babylon, N.Y. WBAL New York. N.Y,
WBAL.FM Baltimore. Md WBAP. FM Ft. Worth, Tex. (s) WBAY Greon Bay, Wis,(s) WBBB-FM Burllington. N.C. (s) WBBF.FA1 Rochaster, N.Y. W88M-FM Chicago. Ill.
WBBO-FA Forest City, N.C. W8BQ-FA Augusta, Ga.
WBBW,FM Youn. Louis, Ill. WBCA.FM Bay Minette, Ala.
C.L. Location

WBCB.FM Leviltown-Falrless WBCI.FM Wlllamshurg Va_{s}, Pa WBCL-FM South Beloit, II. WBCM-FM Bay City, Nilch. WBCN Boston, Mass. (s) WBCO.FM Bucyrus, 0 . WBCR-FM Burcyrus, WBDG Indianapolls, Ind. WBEL-FM S. Beloit, III. WBEN-F B Buffalo, N. Y. WBEU-FM Beauiort. S.C. (s) WBEX.FM Chillicothe. Ohlo WBEZ Chicago. III.
WBFG Detroit. Mich.
WBFM Sensea, S. C.
WBFO Buffalo, N.
WBGM-FM Tallahassee, Fla. WBGO Newark, N.J. WBGU Bowling Green, Ohio WBHS Warwick. R.I.
WBHT.FM Brownsville. Tenn WBIE-FA1 Marietta. Ga. WBiV Wethersfield N. WBIV Wethersfield, N.
WBKV.FA West Bend, Wis. (s)
WBKW Beckley, W. Va.
WBKY Lexington, Ky.
WBLK-FM Buffalo. N.Y.
WBLY.FM Springtield, Ohio
WBMK-FM Wost Point. Ga.
WB MI Meridan, Conn. (s) WBNE-FM Fitchburg, Mass WBMP Elwood. Ind.
WBNO.FM Bryan. Ohio
WBNS.FM Columbus. Ohio
WBOC.FM Salisbury. Md
WBOE Cieveland. Ohio
WBON Milwaukee. Wis.
WBOR Brunswick. Main WBOS.FM Brookline, Mas WBOW-FM Terra Haute, Ind WBPZ.FM Lock Haven, Pa. WBRB.FM Mit. Clemens, Mich. WBRC Birmingham, Ala. WBRD-FM Bradenton, Fla. (s) WBRE.FM Wilkes-Barre, Pa.
WBRK.FM Pittsteld WBRK-FM Pittsfield, Mass.
WBRN-FM Big Raplds, Mich. WBRU Providence. R.I WBSM-FAI New Bedioril, Mass. WBST Muncie, Ind.
WBT.FM Charlotte, N.C.(s) WBTC.FM Houston, Mo WBUD.FM Trenton. N.J.(\$) WBUF Buffalo, N.Y. WBUR Boston, Mass. WBUT-FM Butler. Pa
WBUY.FM WBUY-FM Lexington, N.C. WBVA Woodbridge. Va.
WBVP. FM Beaver Falls, Pa. WBWC Berea, Ohlo WBYM Bayamon, P.R. WBYO Boyertown. Pa. (s) WBZ.FA Boston, Mass
WCAC Anderson, S.C.
WCAC Anderson, S.C.
WCAO.FM Baltimore. Md WCAR-FM Detroit, Mich. WCAS Knoxville. Tenn. WCAC Catonsuilla Phia, Pa WCBC Catonsville. Md WCBE Columbus, Ohio WCBM.FM Baltimory. WCBM-FM Baltimore, Md. WCBW Columbia, Ill. N.Y. WCBW Columbia, Ill.
WCCM.FM Lawrence Conn. WCCN.FM Nolllsville, Wlas WCCV.FM Charlottesville, Va, WCED.FM Dubois, Pa. WCEF.F M Parkershurg, w, Va. WCEN-FM Mt. Pleasant, Mich. (s) WCER-FM Charlotte, Mich. WCFM Williamstown, Mass. WCHA.FM Chambersburg. Pa. (s) WCHD Detroit. Mich. WCHK-FM Canton, Ga. WCHN-FM Norwich, N. Y. WCHS-FM Charlestown. W. Va WCHO-FM Washington Court wCKw House. 0 .
WCLE oFM Clevoland, Tenn. WCLI.FM Corning. N. Y WCLM Chleago, 111 WCLO-FM Janesville, Wis WCLT-FM Newark, Onio WCLV Cleveland, 0.(s) WCLW-FM Mansfiold. Onio WCMC.FM WIIdwood. N.J. WCMB.FM Harrisburg, Pa.
WCME.FM Brunswick, Mai WCME-FM Brunswick. Maine
WCMF.FM Rochester, N.Y. (s) WCAII-FM Ashland. KY. WCMN-FM Arecibo, P.R WCMO Marietta, Ohio WCMS.FM Noriolk, Va. WCMU.FM Mt. Pleasant, Mich.

C.L.
 Location

WCNB.FM Connersville, Ind. WCNH-FM Quincy, Fla
WCNO Canton, Ohio (s) WCNO Canton. Ohio(s) WCNT-FM Centralia, III. WCNW.FM Hamllton. Ohio WCOA. FM Pensacela. Fla. WCOO Richmond, V a. WCOL.FM Newnan, Ga. WCOL-FM Columbus, Ohio WCOM-FM Urbana, O. WCON-FM Cornelia, Ga. WCOP. FM Boston, Mass. WCOS-FM Columbia, S.C. WCOW.FM Lewiston, Maine WCOW FM Sparta, W is. WCPO.FM Cincinnati, Ohio WCRA.FM Effingham. WCRA-FM Effingham, III. WCRO Bluffion, Ind. Mass. (s) WCRO Bluffion, Ind. WCRF Cleveland, 0 .
WCRQ Providence, R. I.
WCRS.FM Greenwood, S. C. WCRT-FM Birmingham. Ala. WCRT.FM Birmingham. Ala. WCSI.FM Columbus, Ind. (s) WCSM-FM Celina, 0 . WCSM-FM Celina, 0 .
WCSQ Contral, Square. N.Y.
WCST.FM Berkeley Springs
WCST.FM Berkeley Springs. W. Va.
wСTC.F

WCTM Eaton, Ohlo WCTM Eaton, Ohlo WCTW.FA New Castle, Minn WCUW F.FM New Castle, Ind. WCUE.FM Akron, 0. WCUM-FM Cumberland, Md WCUY-FM Cleveland His.. Ohio WCWC.FA Rlpon. Wis. WCWP Brookville, N, Ya. WOAC Lancaster, Pa, WDAE.FM Tampa. FIa WDAF-FM Kansas City, Mo. WDAO Dayton, Ohio WDAY.FM Fargo N 0 Pa WDBJ-FM Roanoke, V_{a}. WDBL-FM Snringfield, Tenn. WDBN Barberton, 0 .
WOBO-FA1 Orlando, Fla.
WDBQ-FM Dubuque, Iowa WDCX Buffalo, N. Y. (s)
WDDE Hamden, Conn. WDOE Hamden, Conn. WDDS.FM Syracuse. N. Y. WDEB Jamestown. Tenn. WDEC.FM Americus, Ga. (s) WOEE Hamden, Conn. WOEF-FA Chattanooga, Tenn WDEL.Fh Wilmington, Del. WDET.FM Detroit, Mich. WDFM State College. Pa. WDHA-FM Dover, N.J. WOHF Chicago, III.
WDIF Buffalo, N. Y.
wDJIK Atlanta, Ga.
WDJK Atlanta, Ga.
WDJR Oil City. Pa.
WOKD-FM Kingstree, S.C. WDKN.FM Dickson. Tenn. WDLB-Fh Marshfield, Wis. WDLPEM Panama City, Fla. WDis.FM Statesville, N.C. WDA1J.FM Marquette. Mich. WDATS-FM Lynchburg. Va.
WDNC-FM Durham. N. WDNC-FM Durham. N.C.
WDOC.FM Prestonsburg, ky. WDOD.FM Chattanooga. Tenn WDOD.FM Chattanooga. Ten WDOL.FM Athens. Ga WDOV.FA Sover, Wis. WDOV.FB Dover, Del. WDRC-FM Hartford, Conn. WDRK-FM Greenville, Ohio WORM Darien, Conn.
WDSC.FM Dlilon, S.C. WDSC.FM Dillon, S.C. WDTM Detrait, Mich. (s) WDTR Dotroit. Mich. WDUB Granville. Ohio WOUN.FM Gainesville, Ga.(s) WDUX.FM Aberdeen, iw WDUZ.FAI Green Bay wh WOUZ. Fh Greon Bay. Wis WDWS. FM Champai WOXE.FA Champaign. III. WDXL-FM Lawrenceburg. Tenn. WEAF-FM Philadelphia. Pa. WEAS.FM Savannah, Ga. WEAU.FA Eau Claire. Wis WEAV.FM Plattsburgh, N.Y. WEAW-FM Evanston, III. WERL Jacksonville. WEBG.FM Harrisburg, III. WEBR.FAt Buffalo, N.'Y. WECI Richmond. Ind. WEDA-FM Grove City, Pa. EDR Fol Mam, Fla

C.L.
 Locatlon

WEED.FM Rocky Mount, N.C.
WEEF.FM Hlghland Park. Ill. WEEI-FM Boston, Mass. WEEP.FM PIttshurgh, Pa. WEEX-FM Easton, Pa:
WEFA Waukegan, III.
WEFA Waukegan, III
WEFM Chicago, III.
WEGO.FM Concord. N.C, WEHH.FM Elmira, N. Y
WEIC.FM Charleston. III. WEIV ithaca. N.Y. WEKKZFM Monroe, Wis. WELD-F M Tupelo, Miss.
WELF Glen Ellyn. ItI. WELF Glen EIlyn. III WELG Elgin, lll.
WELL-FA Freeport, III.
WELP-FM Easley, S. C.
WEMC Harrisonburg. Va.
WEMC Marrisonburg. Va.
WEMI Tampa, Fla.
WEAP-FM Mlifaukee, Wis.
WEAU Yosllanti, Alieh.
WEAU Ypsllanti, Alich.
WEND.FM Ebensburg. Pa.
WENY-FA Elmira. N. Y,
WEOK-FM Poughkeepsie. N.Y.
WEOL.FM Elyria, Ohio
WEPM FM Martinsburg. W, Va.
WEPS EIoln, Ill.
WERR Goldsboro, N.C.
WERE-FM Cleveland, Ohio
WERI-FM Westerly, R.i.
WERM Wapakoneta, Ohio
WERS Boston. Mass.
WERT.FM Van Wert, Ohio
WESC.FM Greenvilie, S.C.
WEST-FM Easton, Pa,
WETL South Bend, Ind.
WETN Wheaton. III.
WEVC Evansville. Ind
WEVD.FM New York
WEVD-FM New York, N.Y.
WEWO-FM Laurinburg. N.C.
WFAA-FM Dallas, Tex.
WFAC Mt. Dora. Fla.
WFAH.FA Alliance, Ohio
WFAN Washington, D.C.
WFAU-FM Augusta, Alaine
WFAW Fort Atkinson, Wis
WFBC.FM Greenville, S.C.
WFBE Filint. Mich.
WFBG-FA1 Altooma. Pa.
wFBS.FM winston-Sale Ind.
WFCI Franklin, Ind.
WFCJ Miamisburg. Ohio
WFCR Amherst, Mass.
WFDR-FM Manchester, Ga.
WFDS.FM Baltimore, Md.
WFFM Muskegon. Mich
WFHA-FM Red Bank, N.J,
WFHR-FM Wisconsin Raplds, Wis.
WFID Rio Pledras. P,R.(s)
WFIG Sumter, S.C
WFIL.FM Philadelphia, Pa.
WFIU Bloomincton, Ind
WFIW.FM Fairfisld. III
WFIZ Conneault. 0 .
WFKO Kokomo. Ind.
WFLA-FA Tampa, Fla.
WFLM Ft. Lauderdale, Fla.
WFLN.FM Philadelphia, Pa
WFLO Farmville. Va.
WFLT-FM Frankilin, Tenn.
WFLW-FM Monticello, Ky.
WFLY Troy. N.Y.
WFMA Rocky Mount, N.C.
WFMB Springfield, III.
WFMD-FM Frederick. Mtd.
WFME Newark, NJ.
WFMF Chicago, Ni,
WFMG Gallatin. Tenn
WFMH.FM Culiman, Ala.
WFMI Montgomery. Ala.
WFMK Mt. Horeb, Wis.
WFML Washington, Ind,
WFMM-FM Baltimore, Md.
WFATS Indianapolls, Ind.
WFMT Chicago. Ill. (s)
WFMW-FM Madisonvilie, Ky.
WFAX Statesville. N.C.
WFMZ Allentown, Pa. WFNC.FM Fayettevilie, N.C. WFNS-FAt Burlington, N.C. WFNY Racine. Wis.
WFOB.FM Fostoria
WFOB-FM Fostoria. Ohio WFOS Kamilton, Ohio(s) WFOS South Norfolk, Va. WFPG Atlantic Citystino, Fla. WFPG Allantic City, N.
WFPK Loulsville, Ky. WFPL Louisville, Ky.
C.L. Location

WFTW.FM Ft. Walton Beach, WFUL.FAl Fulton, Ky. WFUR-FM Grand Rapids. Mich. WFUY New York. N.Y. WFVA-FM Fredericksburg, Va. WFYC-FM Alma, Mich. WGAL.FM Lancaster, Pa. WGARFFA Cievelans, (W (WGAU F Washlngton. D.C. WGBE-FM Columbus. Ga. WGEH.FM Cambridge, Mass. (s) WGBI.FA1 Scranton, Pa. WGBS.FM Miami, fla. WGCS Goshen. Ind.
WGCS Goshen, Ind. WGEM-FM Quincy, III. (s) WGET. FM Gettyshurg. Pa. WGFM Schenectady. N.Y. (s) WGGC Glas dow, Ky. WGGG Taylowilso. ill. WGH.FM Newport News. Va. WGHF Brookfield, Conn. (s) WGiG-FM Kinaston. N. WGIR.FM Manchester. N. H WGKA.FM Allanta. Ga. WGLB-F MI Port Washington, Wis WGLC.FM Mendota. III. WGLM Riehmond. Ind. WGLS. FM Glassbor
WGLT Normal, 111 . WGMR-FM Tyrone, Pa. WGMR-FM Tyrone, Pa.
WGMS.FM Washington, D.C. WGMZ Flint. Alich.(s) WGNE St, Petersburg. Fla. WGNC.FM Gasionia. N.C. WGNU-FM Madisota. Ga. WGPA.FM Bethlohem. Pa.
WGPC.FM Albany. Ga. (is) WGPM Detroit. Nich. WGPR Detroit, Mich. (B) WGPS Greenstoro. N.C WGRE Greencastle, Ind. WGRN Greenville. ill. WGRN Greenvile.
WGRP. FM Greenville, Pa,
WGRV.FM Greeneville. Tenn. WGSM.FM Babylon. N. Y WGSU Genesco. N.Y
WGTB. FM Washington. D.C. WGTS.FM Takoma Park, Md. WGUC Cincinnati, onio WGVE Gary, Ind.
WGWR.FM Asheboro, N.C. WGYA Interlochen, Mich. WHA-FM Madison, Wis. WHAD Deliafield, Wis. WHAG.FM Hattway. Md. (s) WHAI.FM Greenfield. Mass, WHAT.FM Philadelonia. Pa. (s) WHAV.FM Haverhill, Mass. WHBB-FM Selma. Ala. WHBC-FM Canton, Ohio III.(s) WHBI Newark. N.J.
WHBM-FM Xenia, Ohio
WHCL.FA Clinton. N, Y
WHCN Hartford. Conn.
WHCU-FM Ithaca. N.Y.
WHDH-FM Boston, Mass.
WHDL.FM Allegheny, N.Y.
WHEB-FM Portsmatith. N. H
WHFB-FM Benton Harbor, Mich. WHFH Floss moor. H11.
WHFI Eirmingham. Mich
WHFM Rochester. N.Y.
WHFS Bethesda, Md. (s)
WHFS Bethesda, Md. (s)
WHHI Highland. Wis.
WHHS Havertown. Pa.
WHHY. FA1 Montgomery, Ala. WHIL-FM1 Medtord. Mass. WHIO-FM Dayton. Ohio. WHIZ.FM Zanesvile. Ohi WHIZFM Zanesvif. WHK.FM Cloveland. Ohi WHKP. FM Hendersonvilie, N.C WHKY.FM Hickory WHKY-FM Hicknry. WHLD.FM Nlagara Falls N_{o} Y WHLD.FM Nlagara Falls. N. Y WHLI-FM Hempstead. N. Y. WHLI-FM Hempstead. N. Y. WHLS.FM PORt Huron. Mich. WHLS.FM Port Hirron. Mich WHL. FM Huntington. Ind WHMO Marinette, Wis. WHME South Bend. Ind. WHMP. FM Northampton. Mass. WHNC.FM Henderson, N.C. WHNR McMinnville, Tenn. WHO-FM Des Molnes, lowa WHOD.FM Jackson. Ala

C.L. Location

WHOK-FMI Lancaster, Ohio WHOM-FM NOW York. N. Y, WHOM-FM Nown ork N.
WHOO.FM Orlando. Fla. (s) WHOP.FM Hopkinsville. Ky. WHOP. FM Hopkinsvile. WHOV Hampton. Va. WHPE.FM Hioh Point. N.C WHPE.FM High Point, N.C WHPR Highland Park. Mlch. WHPS High Point. N.C. WHRB.FM Cambridge. Mass. WHRM Wausau, wis. WHSA HIghland Twp. WHSB A A M Winchester, Mass. WHSY.FM Hattiesburg, Miss. WHTC.FM Holland. Mich. WHTG.FM Eatontown. N.J. WHUB-FM Cookeville, Tent. WHUS Storrs, Conn. WHWC Colfax, Wis. WHYL.FMI Carlisle, Pa, WHYN.FM Springfield, Mass. WIAC-FM San Juan. P. R. (s) WIAL Eau Clairo, w/s. WIAM-FM WIlliamston. N,C. WIAN Indianapolis. Ind. WIBA.FM Madson, Wis WIBC-FMI Indianapolis. Ind. WIBF.FM Jenkintown. Pa. WIBG.FM Phlladelphia. Pa. WIBM.FM Jackson. Alich. WIBW.FM Toweka, Kan. WICB Ithaca. N. Y. WICR Indianapolis.Ind. WIFI Philadelohia, Pa. (s) WIFN Franklin. Ind. WIKY-FM Evansvillo. Ind. WIL.FM St. Louls, M10. WILL.FM Urbana, Iii. WILO.FM Franklort. ind. WILS. FM Lansing, Mic WINA.FA Charlottesville, ve. WINE.FM Kenmore, N. Y. WINK-FM1 Ft. filyers, Fla.
WINT.FA1 Winter Haven, fla WINZ-FM Mlami, Fla. WIOD.FM Mianil. Fla. WIP.FM Philadelphia, Pa WIPR-FM San Juan, P,R.
WIRA-FM FI. Pierco, Fia. WIRC.FM Hickory. N. C. (s) WIRJ:FM Humboldt. Tenn. WISA-FM Isabela, P.R. WIRQ Rochester, N.Y. WISH-FM Indlanapolis, Ind. (s) WISM-FM Madison. Wis.(s) WISN-FN Milwaukee, Wis. WIST. FM Charlotte, N.C. WISU Terre Haute, Ind. WISZ.FM Gten Burnle: Md. WITA-FM San Juan, P,R, WITH-FM Battimore. Md.
WITN-FM Wishington. N. WITN-FM Washington. N. C. WITZ-FM Jasper, ind. WIUS Christiansted, V.I. WIVI-FM CrIstiansted. St. Croix. V. I. WIVK-FM Knoxvilie. Tomn.
WIVY.FM Jacksonvilie, Fla
Wixt WIVY-FM Jacksonvill
WIXN-FM Dixon, It. WIZR-FM Johnstown, N.Y WIZ2-FM Streator. III. WJAS.FM Pittsturgh. Pa WJAS.FM Pittsburgh, Pa. WJAX-FA Jackso WIAZ Albany Ga. WJBI Cincinnati, Ohio WJBK-F Mt Detroit. Mich. WJBO-FM Baton Rouge. La WJBR WIImington. Del. WJCD.FM Seymour. Ind. WJCW.FM Jonnson City. Tenn WIDX.FA1 Jackson, Miss. WJEH-FM Galtipolis, Ohio WJEJ.FM Hagerstown. Md. WJET-FM Erie. Pa. wigS Houghton, Mich. WJHL.FM Johnson City. Tenn. WJIG.FM Tulliahoma. Tenn. (s) WJIM.FM Lansing. Mien. wilv Cherry Valley. N.Y. WJIV Cherry Gall.
WJJD-FM Chicago, III. WJLK-FM Astury'Park. N.J. WILN Birmingham. Ala. W JMC.FM Rict Lake. Wis. WJMD Bethesda. Md. (s) WJMK Plainfield. Ind. WIML Petoskey. Mich. WJMX-FM Florence, S.C. WINC.FM Jack sonville. N. C. WJOF Athens, Ata. wjor-Fil Birlington, Vt WJPA-FM Washlngton, Pa,
WIR-FM Detrolt, Mich.

C.L. Locaflon

WJRH Ematon, Pa WJSC.FM wilberforce. Ohio WJSI Peoria. III.
WJSM Martinsburg. Pa. WJTN-FM Jamestown. N. Y. WJW.FM Cleveland, Ohio WJzz Bridgeport. Conn. WKAI-F N MaComb, III. WKAK Kankakee, III. WKAQ.Fit San Juan. P.R. WKAR-FW E, Lansing. Mich WKAT.F ${ }^{\text {Wh Miaml. Fla. }}$ WKAY.FH Gilasgow. Ky. WKAZ-FM Charleston, w.Va. WKBJ.FM Milan. Tenn WKBL.FM Covington. Tenn, WKBN-FM Youngstown. Onlo WKBY.FM Minnchester. N. Richmond. Ind. WKCQ Burlin. N.H.
WKCR-FA Now York. N.Y. WKCS KHoxville. Tenn. WKDN.FM Carnden. N.J. WKEE.Fht Huntington. W.Va. WKET.FM Ketlering, Ohio(s) WKEU.FM Griffin, Ga, WKEY-FH Covington, Va WKFM Cnicaso. Ill. (s) WKHM-FM Jackson. Mleh. WKIC.FM Hazard, Ky. WKIP.F M Poughkeepsie, N.Y. WKIS-FM Orlando, Fia. WKIX-F R Raleigh. N.C. WKIZ-FM. Key West. Fla,
WKJB.FM Mayaguez, P. R WKJB-FM Mayaguez, P. R
WKJF Pitsburgh. Pa. (s) WKJG.FM Fi. Wayne. Ind. WKKD-F H Aurora, III. WKKY-F H Erlanger, Ky,
WKLC.FH St. Albans. W.
Wa WKLF-FH Clanton, Ala, WKLS Marietta, Ga. WKLW.FH Grand Rapids. Mich. WKMH-FA Dearborn, Mich.
WKMI-FIA Katamazoo, Mlich.
WK W KMO K Jkomo. Ind. WKNA Clarleston, w. Va. (s) WKNE.F A Kuene, N.H WKNT-FM Kent, O WKOF Hapkinsville, Ky.
WKOK.F
W Suntury. Pa. WKOK-FW Suntury, Pa. WKOX-F A Framingham. Wass WKOZ-FM1 Kosciusko, Mliss. WKPT-FMt Kingsport. Tenn. (s) WKRC-FM Cincinnati, Onio (s) WKRG-F
WKRT-F IA Milo, Ala,
Cortland, N. WKSN-FM Janiestown. N. Y WKSU.F in kent, Ohio WKTA M M Kenzle. Tenn WKTL St "uthers. o. WIGM, Mayfield, S.C. WKTM-FA Mayfield, Ky.(s)
WKTN-FA1 Kenton. WKTZ.FN Jacksonville. Fla.(s) WKUZ Wathash. Init WKWK-FM Wheeling, w.va. WKXI Snyrna. Ga WKYX.F A Paducah. Ky. WLAD-FM Danbury, conn. WLAE Hertford. Conn, WLAG-FM LaGrange. Ga WLAN-FFI Lancaster, Pa, WLAP.FA Lexington. Ky WLAV-FM Grand Rapids, Alloh. WLAY-FA Musclo Shoals. Ala. WLBA-FA Gairesville, Ga. WLBG-FA Laurens-Clinton, S.C. WLBH-Fil Mattoon, III. WLBJ-FM Bowling Green, ky WLBK-FM Dekalb, II WLBH-FN Lebanon, Pa.
WLCM-FA Lancaster, S.C
WLDM OAK Park. Wich. (s)
WLDR-FA Traverse City. Mich WLDS.FW Jacksonville. ill. WLEC-FN Sandusky. Ohlo WLEN AN Ian, Mith. \mathbf{W} WLET-FN Toccoa, Gia. WLFM Alpleton. WIS. WLIB-FM New York. N.Y. WLIN Det olt. Mich. WLIR Hic sville, N.Y, (s) WLJC Beantyville. Ky WLLH-FH Lowell. Mass. WLMC Ok iecholiee. Fla. WLNA-Fh Peekskill. N.Y.
WLNH.FA
Laconla. N. H.
WLNO Lor don. Ohio WLNR-FN Latsing, III. WLOA.FM Braddock, Pa.(s)

C.L.
 Location

WLOB.FM Portiand Ataine WLOC-FM MUnfordvile. Ky WLOE-FM Leaksville. N.C. WLOI.FM La Porte. Ind WLOL.FM Minneapolls. Minn, WLOM Chattanooga, Tonn. WLOQ Winter Park, Fla. WLOS. FM Ashevilie, N.C. WLOV Cranston, R., WLPO-FM La Salle, $\|\|$ WLPR monile. Ala. (s) WLRS Louisvile, Ky. WLRJ Roanoke Va. WLRW Champaign, III. WLS.FM Chicago. III. WLTA.FM Allanta, Ga. (s)
WLUV-FM Loves Park, III. (s) WLUV-FM Loves Park, III. (s WLVL Louisvillo, Ky.
WLYP Frankiln,
N. J. WLYP Franklin, N. J. WLYM.FM Lynn. Mass. WMAI-FM Panama Cily, Fla. WMAL.FM Washington, D. C. (s)

WMAQ.FM Chicago, III.(s) WHAS-FM Springfield. Mass. WMAZ-FM Macon. GaWMB0.FM Peoria. 1I. WMBM Miaml Beach, Fia. WMBN-FM Potoskey, Mich WMBO-FM Auburn. N.Y. W MCF Stuart. Fla. (s) W MCO New Concord, Ohi WMDD. Greensboro, N.C. (s) WMEE-FM Orono. Maine WMEB. CM Orono WMEV.FM Marion. Va, WMFJ.FM1 Daytona Beach, Fla. WMFM Madison. Wls. WMFP Ft. Lauderdale, Fla. WMiGMA Atlantic Clity. N. J. WMGM Atlantic City. N.J. WMHC South Hadley, Mass. WMHC South Hadley WMHL.FM Milwaukee, Wis. WMIT Black Mountalin', N.C. WMiv S. Bristol. N.Y. WMIX.FM MI. Vernon. III. WMJR Fi. Lauderdale.
WMKC Oshkosh. Wis.
WMKY.FM Morehead, Ky WMKIS.FM Sylacauga, Ala.
WMMB-FM Melbourne. FI WMMM Westport. Conn. WMNA.FM Gretna, Va WMNB.FM North Adams, Mass,
WMiNI-FM Columbus. Ohio WMOA.FM Marletta. 0. WNOR.FM Morehead. Ky WMOU.FM Berlin. N.H WMPL.FM Hancock. Mich. WMPS.FM Memphis. Tenn. WMRF FM Lewistown. Pa. WMRI-FMt Marlon, Ind. WMRN-FM Alarion, Ohio WMRO-FM Aurora. III. WMRP.FM Flint. Micti. WMSH-FM Elizabethtewn, Pa. W MSP Harrisburg, Pa. WMSR-FMI Manchester. Tenn. WMT.FM Cedar Rapids, lowa (s) WMTH Park RIdge. III. WMTI Norfolk, Va. WMTM.FM Moultrie, Ga. WMTN.FM Morristown. Tex. (s) WMTW.FM Mt. Washington. N.H.(s) WMUA Amherst, Mass. WMUB Oxford, Ohis WMUH Allentowh. Pa. WMUL Huntington. W.Va WMUN Muncie, Ind. WMUU.FM Greenvilie. S. C. (s) WMUZ Detroit, Mich. WM MA. FM Martinsvilic, Va.(s) WMVB.FM Millville. N.J. WMVG.FM1 Mlled geville, Ga.
WMVO.FM Mount Vernon, Ohio WMVR-FM Sidney Ohio WMYB-FM Myrite Beach. Fia WMYR-FM Ft. Myers. Fta. WNAD-FM Norman. Okla. WNAM-FM Neenah-M1enasha.
WNAS New Albany. Ind.

WRATTE'E
RADCO L(OG

C.L. Location

WNCT-FM Greenvillo, N.C. WNDU.FM South Bend, Ind. WNOY Crawfordsville, Ind WNEM-FM Bay City, Mich. (s) WNES.FM Central Clty, Ky. WNEX.FM Macon, Ga.
WNFM1 Naples. Fla.
WNFD.FM Nashville, Tenn. (s) WNGO-FM1 Mayfield, Ky. WNHC-FM New Haven, Conn. WNIB Chicago, 111. WNIC Dekaib, III.
WNIK.FM Arecibo, P. R
WNNJ.FM Nowton, N.J.
WNNR.FM New Drleans, La, WNOB Cleveland, Ohio (s) W NOF Sit Paul, Minn.
WNOK.FM HIón Point, N.C
WNOR.FM Noriolk, Va. N.C
WNOS.FM HIoh Point, N.C.
WNOW-FM York, Pa.
WNRE Circleville, Ohio
WNRG-FM Grundy, Va
W NSL.FM Laurel, Mlss.
WMTH Winnetka, III.
WNT! Hackettstown, N.J.
WNTL Memuhis, Tenn
WNUS.FM Chicago, III. (s) WNWC.FM Arlington His., IIt. WNXT-FM Portsmouth, O. WNYE New York. N.Y. WOAK Royat Oak. Ailch. WOAP.FM Owosso, Mich. WOAY-FM Oak Hill. W.Va WOBN Westerville, Ohio WOBT. FM Rhinelander, Wis. WOC-FA1 Davenport, Lowa WOCB.FM W. Yarmouth, Mass. WOCH-FM North Vernon, Ind. WOOL.FM Carbondale. Pa, WOHS.FM Shelby. N.C
WOI-FM Ames, lowa
WOIV De Ruyter, N.Y
WOKZ. FM Alton, lif.
WOL-FM Washington, D.C.
WOLA San Juan. P.R.
WOLI Ottawa. IIt.
WOMC Royal Oak, Mich.(s)
WOMI-FM Owensboro. Ky
WONE.FM Dayton. 0 .
WONE.FM Dayton. 0 .
ONO.FM Syracuse. N. Y. (s)
OOF.FM Drand Rapids. MIJch. (s) WOOF-FM Dothan, Ala. (s) WOPI.FM Bristol, Tenn. WOR.FM New York, N. Y WORA.FM Mayaguez, P.R. WORM-FM Savannah, Tenn. WORX. FM Madison. Ind. WOSC.FM Fulton. N. Y WOSE Oswego N Y
WOSU. FM Columbus, Ohio WOTW FM Nashua, N.H. WOUB.FM Athens. Ohi WOW.FM O maha, Nebr. WOXR Oxford. Ohio
WOYE.FM Mayaquez, P. R
WPAA Andover, Mass,
WPAC.FM Patchogue. N.Y. (s)
WPAD.FM Paducah, Ky.
WPAT.FM1 Paderson, N., (s)
WPAY.FM PPortsmouth,
WPBC.FM Richfield, Minn (s)
WPBF W. Palm Beach. Fla,
WPBS Philadelphia, Pa.
WPES Philadelohia. Pa. (s)
WPEA Exeter. N.H
WPEL.FM Montrose, Pa WPEN.FM Phlladelphia. Pa. WPFB.FM Middletown, Ohio (s) WPFK Los Angeles. Cal WPFM Providence, R.I.(s)
WPFR Terre Haute. Ind.
WPGC Bradbury Hts.. Mid. WPGFI FM Burgaw, N.C
WPGU Urbana, III
WPHD Norfolk, Va.
WPHS Warren, Mich
WPIC-FM Sharon, Pa
WPIN-FM St. Petersburg, Fla
WPIT-FM Pittsburgh, Pa,
WPIX.FM New York, N. Y

C.L. Location

WPJB-FM Providence, R.t. WPKE.FM Pikeville, Ky. WPKM Tampa, Fla. WPLB Greenville. Mich. WPLM-FM Plymouth, Mass. WPLN Nashvilte, Tenn. WPLO-FN Atlanta, Ga. WPMP.FM Pascagoula, Miss. WPPA.FM Pottsville, Pa. WPRB Princeton, N.J.
WPRK Winter Park, Fla. WPRM San Juan, P.R. WPRO.FM Providence, R.I.
WPRS.FM Paris, 111 .
WPRW FA Manassas, Va. WPSR Evansville, Ind.
WPTF FM Rateigh. N.C
WPTH Fort Wayne. ind. (s) WPTN.FM Croakeville. Tenn WPTW-FM Piqua, Dhio WPWT Philadelphia, Pa.
WQAL Philadeljhia, Pa. (s) WQAL Philadelphia, Pa. (s)
WQDC.FM Midland, Mich. (s) WQFM Mitwaukee, Wis. WQIK.FM Jacksonville, Fla. WGMF Babylon. N.Y. (s) WGMG Greensboro, N.C. WOMS Hamilton, Ohio WaRB-FM Pittsfield, Masso
WQRS.FM Detroit, Mich. WQRS.FM Detroit, Mich
WOST Forest, Miss. WaST Forest, Miss. WaXR.FM New York, N.Y. WRAD-FM Radrord, Va. WRAJ.FM Anna, III.
WRAK-FM Willamsport, Pa. WRAL-FM Raleigh, N.C. WRAY-FM Princeton, Ind. WRBS Battimore. Md. WRBS Battimore, Md. WRCO.FM RIChland Center WRCP-FM Richand Center, Wis. WREC.FM Memuhis Tena WRED Youngstown, Ohio WREK Woodslock. III WREO.FM Ashtabula, ohio

Columbus, Otio
WRFK Richmond, Va,
WRFL Winchester, Va.
WRFS.FM Alexander City, Ala. WRFY-FM Reading, Pa. WRHS Park Forest, IIt. WRIG-FM Wausau. Wis WRIP. FM Rossvilie. Ga.
WRIT.FM MIIWaukee, Wis WRIU Kingston. R. I. WRJN-FM Racine, Wis. WRJR Lewiston, Maline WRKB.FM Kannapolis, N.C. WRKO.FM Boston, Mass WRKTFM Cocon Beach, Fla. (s) WRLB Long Branch, N.J.(s) WRLC Palmyre, Pa.
WRLD-FM Lanett, Ala. WRLM N. Attlebora. Mass. WRMi-FM Morris, Itt. WRMN.FM E!gin, II!. WRNJ Allantic City, N.J. WRNL. FMI Richmond, Va. WRNW Mount Kiseo, N. Y. WROA-F M Gulfport, M1ss.
WROC-F R1 Rochester, N. WROC-FM Rochester, N.Y.
WROK.FM Rockford, II. WROK-FM Rockford, WROM.FM Rome, Ga.
WROW.FM Atbany, N.Y WROYFFM Carml, ill. WRPI Troy, N.Y.
WRPM.FM Poplarville, Miss. WRR FM Dapas Wis. WRR.FM Dallas, Tex. (s)
WRRH Franklin Lakes, N.J. WRRH Franklin L
WRRZ-FM CIInton, N.C.
WRSA Decatur. Ala
WRSC.FM Slate College. Pa. WRSJ-FM Bayamon
WRSV Skokie, III.
WRSE.FM Elmhurst, III. WRSS. FM Bayamon. P. R. WRSW.FM Hartford Con WRTI.FM Philadelohia. Pa. WRUFFM Ghiadestille, Fia. WRUN.FM Utica, N.Y. WRUS.FM Russelvilile. $K y$. WRUV Burlinoton. Vt. WRVA.FM Richmond, V a WRVB.FM Madison, WIS. WRVC Nortolk, Va. WRVG Georgelown. Ky. WRWR Port Clinton. Ohio(s) WRXO.FM Roxboro. N.C. WRYT.FM Pittshurgh. Pa WSAB Mt. Carmel, III. WSAB Mt. Carmel, Ill. WSAC-FMIFt. Knox, Ky. WSAE Spring Arbor. Mich
WSAL. FM Logansport. Ind. WSAM-FM Saginaw, Mich.
C.L. Locafion

WSAU-FM Wausau, Wis. WSB-FM Atlanta, Ga. (s) WSBA-FM York, Pa. WSBC-FM Chicago, III.(s) WSBF-FM Clomson, S.C. WSCB Springheld Mass, WSC.FM Berkeley Springs, w.V. WSOM Chicapo, ill.
WSEB Sebring. Fia
WSEI Olney. 111.
WSEL-FA1 Pontotoc, Miss WSEV.FM Sieverville. Tenn. (s) WSFC-FM Somersef. Ky. (s) WSHS Floral Park. N. Y. WSHU F airtield. Conn. WSID.FM Baltimore, Mu. WSIM-FM Salem.Ind. WSIP.FM Paintsville, Ky. WSIU Carbondale. 111 . WSIV-FM Pekin. III. WSIX-FM Nashville. Tenn.(s) WSJG Hallandale, FJa. WSJS-FM Winston-Satem, N.C. WSKS Wabash, Ind.
WSLI.FM Jackson, Miss.
WSLN Delaware, Ohio WSLS. FM Roanoke. $V a$. WSLU Canton. N.Y. WSMC.FM Collegedale, Tenn. WSMO.FM Waldorf. Md. WSMI-FM Litchfield. III. WSMT.FM Sparta, Ten WSNJ-FM Bridgeton, N.J WSOG-FM Charlotte, N.C. WSOM-FM Salem, Ohio wsou S. Orange, N.J. WSOU S. Orange, N.J. WSPA-FM Spartanburg, S.C.(s) WSPB.FA Sarasota, Fla SSPE Si taledo, Ohio WSPE Springville, N.Y. W SPT-FM Stevens Polnt, wis. WSRC. FM Ourham, N. C. WSRS Worchester. Mass. WSSU Superior Wis. Ohto WSTC.FM Stamford.
WSTC.FM Stamford, Conn. WSTO Owensboro. Ky. (s) WSTR-FM Sturais Alich. WSTU.FM Stuart, FIa WSTV-FM Steubenvilie, Ohio WSUP Platteville, wIs: WSVA.FM Harrisonburg, Va. WSVB Tamaqua, Pa. WSVL.FA1 Shelbyville. Ind. WSVS.FM Crewe, Va. WSWG Greenwood. Miss WSWM East Lansing, Mich. (s) WSWN.FM Belle Glade. Fla WSWW-FM Platteville. Wis. WSYR.FM Syracuse, N.Y.(5) WTAB-FM Tabor City. N. C WTAD-FM Quincy. Ili. WTAP.FM Parkerslurg. W. Va. WTAR Norfolk, Va.(s) WTAS Crete. 11
WTAW-FM College Station, Tex, WTAX-FM Springitald. 11t. (5) WTAY-FA Robinson, 111. WTBC-FM Tuscaloosa, Ala. WTBO-FM1 Cumberland, Md. WTBS Cambridge, mass. WTCA-FM Plymouth. Ind.
WTCH-FM Shawano. Wis. WTCH-FM Shawano. Wis. WTCM-FA Traverse City, Mich WTCO.FM Campellsville, $K y$. WTCW-FM Whitestburg, Ky. WTCX St. Petersburg, Fla. (s) WTOS Toledo. Ohio
WTFM Lake Success, N.Y.(s) WTG1 Hammond. La. WTHI-FM Terre Haute, Ind. WTHS Miami, FIa.
WTIC.FM Hartiord. Conn. (s) WT10 Charleston, W. Va WTSS.FM Jackson. Tenn. WTJU Charlottesville, Va. WTLN-FM Maitland, Fla. WTMA.FM Charleston, S.C. WTMJ.FM Mifwaukee. WIs. (s) WTNC-FA1 Thomasville, N.C. WTOA Trenton. N.J. WTOC-FM Savannah, Ga. WTOO. FM Toledo. Ohio WTOF Canion. Ohlo WTOL.FM Toledo, Ohio WTOP. FM Washington. D.C. WTOS Wauwatosa, Wis. WTPA.FM Harrisbura. Pa. WTRC-FM Elkhart, Ind. WTRE Greensburg. Ind. WTRF-FM Wheting. W.va.
WTRW-FM Two Rivers. Wis. WTSE-FM Lumberton, N.C.

C.L.
 Locatlon

WTES.FM Buffalo, N.
WTSR Trenton, N.J.
WTSV.FM Claremont, N.H. WTTC-FM Towanda, Pa WTTF-FM Tiffin, Ohio WTTN.FM Waterlown. Wis. WTTV-FM Bloomingtan, Ind WTVN.FM Columbus. Ohio WUAG Greenstioro, N. C WUCB-FMI Chicago, ill. WUFM Uilica. N.Y.(s) WUHY.FM Philadelohia, Pa. WULX-FM Richmond, Ind. WUNC Chapel HIII, N.C. WUNH Durham, N.H. WUDA Tuscaloosa, Ala. WUOM Ann Arbor, Mich WUOT Knoxville. Tenn WUSC. FM Columbia, S.C. WUSF Tampa. fla. WUST-FM Bethesda. Md. WUS Scranton, Pa. WVAF.FM Charleston.
WVAF.FM Charleston WVAM-FM Altoona, Pa.
WVBR.FM thaca. N. Y. WVBR.FM thaca. N.Y. WVCA.FA1 Gloucester. Mass. WVGG.FM Coral Gables, Fla.(s) WVEM FM Hampton, Va. WVEM Springfteld, III. WVGR. FM Grand Rapl WVHC Mempstead Raplds. Mich. WVAC Hempstead, N.Y WVHI Evansville. Ind.
WVIC-FM E. Lansing. Mich.
WVIP-FM Mount Kisco, N.Y
WVIS Terre Haute, ind.
WVKC.FM Gatesburg, IIi. WVKO.FM Columbus, Ohio WVLK.FM Lexington. Ky.(s) WVMC-FM Mt. Carmel, Iti. WVMil.FM Biloxi, Miss. WVNA.FM Tuscumbla, Ala. WVNJ-FMI Newark, N.J.
WVNO.FM Mansfield, Ohio(s) WVNO•F M Mansfield, Ohio(s) WVOS.FM Liberty.
WVOT.FM Wilson. N.C.
WVOX-FA New Rochelle. N.Y.
WVOZ-FM Carolina. P. R. WVPO-FM Stroulsburg, Pa WVSC.FM Somerset, Pa WVSH Huntington. Ind. WVST St. Petershurg. FIa. WVTS Terre Haute, ind. (s) WVUD.FM Kettering, Ohio $W V V V$ Blackshurg, V a WWBD.FM Bambero. S.C. WWCF Greenfield. Wis. WWCO-FA1 Waterbury. Conn. WWDC-FM Washington, D.C WWDL.FM Scranton. Pa. (s) WWDL Scranton. Pa. (s) WWHC Hartiord City, Ind WWHG.FM Hornell, N.Y. WWHI Munefe, Ind. WWHO Jackson. Miss. WW -FM Detrolt, Mich. WW JC-FM Superior, wIs.
WWKS Macomb, ilf.
WW Mo Reidssille, Wis.
WW MO Reidssille, N.C.
WWMT New Orleans. La. (s)
WWOD-FM Lynchbur, Va. WWOG Boca Raton, FA. WWOM-FM New Orleans, La WWON-FM Woonsocket. R.I. WWOS Palm Beach, Fla. WWPB Mlami, Fla, (s)
WWST. FM Wooster, Onio WWST. FM M Wooster. Ohio WWTV.FM Calillac, Mich. WWVA.FM Wheeling, W.Va. WWWS Greenville, N.C. WWYN.FM Erie. Pa. (s) WXAX Elkhart. Ind. WXBM-FA Milton, Fla.
C. 1. WXYW Suffolk. Va. WYAK Sarasota. Fla.(s) WYBC-FM New Haven. Conn. WYOD Now Kensinoton,
C.L. ocation WYCA Hammond, Ind WYCE Warwick. R.1. WYCS Yorktown. Va. WYFE Lansing. Mlen,
WYFI Norfolk, Va.(s)
C.L. Loeation

WYFM Charlotete, N.C. WYFS Winston.Satem, N.C. WYON Grand Rapids. Míct WYSL. FM Bultitiod. N.Y
C.L.

Location
WYZZ Wilkes-Barre, Pa:
WZAK Cleveland. O.
W2EP. FM DaFunlak.
WZIP.FM Cincinnati. Onlo
WZMF Mitnomonee Falls, Wis.

Canadian AM Stations By Call Letters

C.L. Location CBA Sackville. N.B. CBD saint John N. N . CBE Waint Jor. Ont. CBE NINdsor. Ont. CBF Nontreal. Que. CBG Gander. Nild.
CBH Hallfax.
N.S. CBI Sydney. N.S. CBJ Chieoutimi. Quo CBK Regina. Sask. CBL Toronto. Ont. CBM Montreal. Que. CBN St. John's. Nfld. CBOF OHA. Ont. CBOF Grand Falls. Nifd. CBT Grand Falls. Nhto CBU Vancouver, B. CBV Quebec. Que.
CBR Calgary. Alta CBW Winnipes. Man CBW Winnipes, Man. CBX Edmonton. Alta. CBY Corner Brook. Nild. CBZ Fredericton. N.B. CFAB Windsor. N.S. CFAC Calgary, Alta. CFAR Aliona, Man. CFAX Victoria. B.C. CFBC Saint John, N.B CFBR Sudbury. Ont.
CFBV Smithers. B.C. CFCB Corner Brook. Nild. CFCF Montreal 15, Que. CFCH Callander. Ont CFCL Timmins. Ont CFCN Calgary, Alta. CFCO Chatham, Ont. GFCP Courtenay. B.C. CFCY Charlottetown.P.E.I. CFDA Victoriaville. Que. FDR Dartmouth. N.S CFGB Goose Bay. Nild CFGM Richmond Hill. Ont. CFGP Grande Praírie. Alta. CFGR Gravelbourg. Sask. CFGT Salnt-Joseph-d'Alma.
CFJC Kamloons. B.C. CFJR Brockville Ont. CFKL Scheffervilie. Que Studio at Station CFBV Studio at Station CFBV CFLM La Tuque. Que. CFMB Montreal, Que. CFMB Montreal, Que. CFML Cornwall. Ont.
CFMR Fort Simpson. N. W
CFNB Fredericton. N.B
CFNS Saskatooll. Sask.
CFOB Fort Frances.
CFOM Quebec, Que.
CFOM Quobec, alle.
CFOR Orillia, Ont.
CFOX Pointe Clalre, Que.
CFPX Pointectarr.
CFPL London. Ont.
CFPR PrInce Rupert. B.C
CFOC Saskatoon. Sask.
CFQC Saskatoon. Sa
CFRA Olfawa,
GFRB Tornnto, Ont.
CFRC Kingston, Ont.

Kc. C.L. Location
107
130
111
155
69
145
86
114
158
54
74
94
64
91
125
54
69
98
101
99
74
99
97
1450
96
129
59
1070
930
55
123
570
60
60
620
1060
63

CFRN Edmonton. Alta. CFSL Weyburn. Sask.

 CFSL Weyburn. Sask. 550 CFRS Simcoe, OnI. 690 CFRY Portagela Prairie, Man 450 CFT」 Galt. Ont. 0 CFTK Terrace. B.C. CFUN Vancouver, B.C. \begin{tabular}{l|l}1140 \& CFUN Vancouver, B.C.

1580 \& CFVR Abbotsiord, B.C
\end{tabular} 0 CFWB Cambbell River, B.C. CFWH Whitehorse, Y, T.

CFYK Yellownife, N.W. CFAK Moose Jaw, Sask CHAB Moose Jaw. CHAK Inuvik N.W T CHAT Mtedicine Hat, Alta, CHCM Marystown. Nild. with
another stuilio at St. John's.
CHEC Lethbridge. Alta CHED Edmonton. Alt CHEX Poterborough. Ont. CHFA Edmonton. Alta, CHFC Churchill. Man CHFI Toranto. Ont. CHGB La Pocatiere, Que. CHIC Brampton. Ont CHIQ Hamilion. Ont CHLC Saquenay Co.. Que. CHLO St. Thomas. Ont. CHLT Sherbrooke, Que. CHML Hamilton. Ont. CHNC New Carlisle, Que. CHNO Sudbury. Ont CHOK Sarnia Ont CHOV Pembroke. Ont CHOV Pembroke, Ont.
CHOW Welland, Ont. CHQM Vancouver, B.C. CHQR Calgary, Alta. CHQT Edmontan. Alta. CHRC Québec. Que. CHRD Drummondvi CHRD Drummondville, Que. CHRS Joberval. Carlier. CHSJ Saint John. N. B. CHSM Stelnbach. Man. Stud
at Station CFAM1. Altona.
CHTK Prince Rupert. B.C.
. 1250
CHTM Thompson. Man. CHUB Nanamo. B.C. CHUC Cobourg. CHWK Chilliwack. B.C CHWO Oakville. Ont. CHYm Kitchener. Ont. CJAF Cabane. Que CJAT Caband. Qu cJay Port Albern 60 CJBC Toronto. Ont. 10 CJBM Causapscal. Que.. with
1230 Citudio at Rimouski. Que.
980 CJBQ Belleville. Ont.
CJBR Rimouski. Que
CJCA Edmonton. Alta. CJCB Sydney. N.S.
010 CICH Halifax, N.S.
710 CJCN Grand Falls, Nild.
Kc. C.L

Location
CJCS Stratford, Ont. CJDC Dawson Crbek, B.C. CJDV Drumheller, Alta, CJEM Edmundston. N. CJFP Riviere-du-Loup. Que. CJFX Antloonish. N.S. CJGX Yorkton. Sask CנIB Vernon, B.C.
C• Sault Sie. Marie, Ont. CJjC Langley. B.C. CJKL Kirktand Lake, Ont. CJLM Joliette, Que. CILR Quebec, Que. CJLS Yarmouth, N.S.
CJLX Fort William. Ont. CJME Regina, Sask. CJMS Alontreal. Que. CJMT Chlcoutimi, Que. CJNB North Battleford. Sask. CJNR Blind River, Ont. CJNR Bind River, Ont. CJOC Lethbridge, Alta.
CJON St. Jolin's. Nfld. CJON St. Jolin's. Nfld.
CJOR Vancouver. B.C.

Kc. C.L.
Locofion
Ke. 1240 CKDR Dryden. Ont. Studio at 1350 Etation CJRL, Kenora. Ont. 900 910 CKEC NPw Glaspow. N.S. 1320 570 CKEK Cranhrook. B.C. 570 30 CKEN Kentville. N.S. 1350 1400 CKEY Toronta. Ont. 590 580 CKFH Toronto. Ont. $1+30$ 940 CKGB Timmins, Ont. 940 CKGM Montreal. Que. 980 1050 CKJL Saint-Jéröme, Que. 900 $\begin{array}{lll}850 & \text { CKKW Kitchenor, Ont. } & 1320 \\ 560 & \text { CKLB Oshawa. Ont. } & 1350\end{array}$ CKLB Oshawa. Ont.
CKLC KInoston, Ont. 1350 1350
1380
1230
1060 CKLD Theiford Mines. Que. 1230
1340 CKLG Vaneouver. B.C. 730
$\begin{array}{lll}800 & \text { CKLM Montreal, Que. } & 1570 \\ 1300 & \text { CKLN Nelsoir. B.C. } & 1390\end{array}$
1280 CKLS La Sarre. Que. 1240
$\begin{array}{lll}1280 & \text { CKLW Windsor, Ont. } & 800 \\ 1420 & \text { CKLY Lindsay. Ont. } & 910\end{array}$
1420
1050
730
CKML Mnnt Laurler, Que.
CKMP Midland. Ontario
CKMR Neweastle. N. B.
$\begin{array}{ll}\text { CKNR Neweasile. N. B, } & 790 \\ \text { CKNB Campheilion. N.B. } & 950\end{array}$
CJOR Vancouver. B.C.
CKNB Campheilton. N. 8.
CKNL Fort St. John. B.C CKNW New Westminster.
CKNX Wingham. Ont.
CKOC Hamllion. Ont. 980
920
CJOY Guelph, Ont. 920
1150
CJQM Winnipeg. Man.
CJRL Kenora. Ont.

CKOK Penticton, B.C.
CKOM Saskatoon. Sask.
CKOM Saskatoon. Sask.
CKOT KIIsonhurs. On
CKOX Woodstock. Ont. CKOY Ottawa. Ont.
CKPC Brantford, Ont.
CKPC Brantiord, Ont. B.C $\quad 1380$
CKPG Prince George. B.C. $\quad 550$
CKPG Prince George. B.
CKPM Ottawa, Ont.
CKPM Ottawa, Ont.
CKPR Port Arthur, On $\begin{array}{lr}\text { CKPR Port Arthur, Ont. } & 1440 \\ \text { CKPT Peterborough, Ont } & 580\end{array}$ $\begin{array}{lll}\text { CKPT Peterborough. Ont. } & 1420 \\ \text { CKRB Cte de Benute. Que. } & 1460\end{array}$ CKRB Cté de Benuce. Que.
CKRC WInnipeg, Man. CKRC WInnipeg, Man. CKRD Red Deer, Alta CKRN Rouyn, Que. CKRS Jonquiare. Que. $\begin{array}{ll}\text { CKSA Saint-Boniface. Man. } & 1050 \\ \text { CKSB Sal }\end{array}$ $\begin{array}{ll}\text { CKSB Saint-Boniface, Man. } & 1050 \\ \text { CKSL London. Ont. } & 1410\end{array}$ CKSM Shawinigan. Que. CKSO Sudbury. Ont. Sask.

CKSW Swift Current. Sask CKTB St. Catharines. Ont. $\quad 1400$ $\begin{array}{ll}\text { CKIS St. Catharines. Ont. } & 610 \\ \text { CKTK KItimat. B.C. } & 1230 \\ \text { CKK }\end{array}$ CKTK KItimat. B.C. Que, 1230 CKTR Trols-Rivieres, Que. CKTS Sherbrooke. Que. CKUA Edmonton. Alta. CKVD Vald'Or. Que CKVAt Ville-Marle. Que \begin{tabular}{ll}

RVA Villear \& 850

\hline 10

 CKWL Williams Lake. B.C. 1240

CKWL Kinams Kine, B.C. \& 1240

CKW

\hline 680
\end{tabular} CKWS Kingston. Ont. CKWX Vancouver, B.C. CKX Brandon, Ban. CKX Brandon, Man,

CKXL Calgary, Alta.
280 CIXX Salmon Arm. B.C.
1220 CKY Winnipeg. Man. 920 CKYL Peace River. Alta. 1220 VOAR St. John's, Nfid. 900 VOCM St John'e, NAd.
730 VOWR St. John's, Nfld. 800
1250

$$
\begin{aligned}
& \text { CJRN Niagara Falls, Ont. } \\
& \text { CJRW Summerside. P.E.i. }
\end{aligned}
$$

CJSL Estevan. Sask
CJSP Leamington. Ont.
CJSS Cornwall. Ont.
CJWA Sautt Ste. Marie. Ont. CKAC Montréal, Que.
CKAD Middleton. N.S.
CKAR Huntsville. Ont
CKAR-1 Parry Sound. Ontario.
Studio at Station CKAR.
Huntsville. Ontario
CKAY Duncan, B.C.
CKBB Barrie. Ont.
CKBC Bathurst. N.B.
CKBI Prince Aibert. Sask.
CKBL Matane. Que.
CKBM Montmagny. Que.
CKBW Bridgewater. N.S.
CKCB Collingwood. Ont. with
another Studio at Barrie.
CKCH Hull. Que.
CKCK Regina. Sask.
CKCL Truro. N.S.
CKCM Grand Falts. Nfld. with
another studio at St. John's.
CKCN Sept.lles. Que.
CKCQ Quesnel, B.C.
CKCR Revelstoke. B.C. Studio
at Station CKXR. Salmon Arm. B.C. 1340
CKCV Québec, Que.
CKCW Moncton. N.B.
CкCY Sault Ste. Marie. Ont.
CKDA Victorla. B.C.
CKDH Amherst. N.S.

Canadian FM Stations by Call Letters
C.L. Location

CBC.FM Toronto. Ont
CBF-FM montreal. Que.
CBM-FM Montreal, Que.
CBO-FM Ottawn. Ont.
CBU-FM Vancouver. B.C.
CBW.FM Winnipeg. Man.
CFBC-FM Saint John. N.B
CFCF-FM Montreal. Que.
CFFM-FM Kamloops. B.C.
CFMC.FM Saskatoon. Sask
CFMO-FM Ottawa. Ont.
CFMS-FM Victoria, B,C.
CFPL-FM Landon. Ont.
CFRC-FM Kingston. Ont.
CFRN-FM Edmoston. Alta.

Me. C.L.
 Location

1 CHFI.FM Toronto, Ont 95.1 CHFM-FM Calgary, Alta. 00.7 CHIC-FA Brampton. Ont. 103.3 CHLT. FM Sherbrooke. Que CHML.FM Hamilion. Ont CHNS-FM Malifax. N.S CHQM-FM Vancouver, D.C CHRC-FM Quebec, Que. CHUMI.FM Teronte, Ont. CHYM-FM Kitchener. Ont CJBQ-FM Belleville. Ont. CJBR-FM Rimouski, Que. CJER-FM Romouski, Qub. CJCA-FM Edmonton. Al
CJCB-FM Syilney. N.S. CJFM-FM Montreal, Que.

Me. C. L. Location 98.1 CJIC-FM Sault Ste. Marie, 95.9 Ont. 102.1 CJMS-FM Montreal. Que. 95. $\mathbf{C J O E}$ FM Winnipeg. Man 95.3 CJOV-FM Kelowna. B.C $\begin{aligned} 96.1 & \text { CJRT.FM Toronte. Ont. } \\ 103.5 & \text { CJSS.FM Cornwall. Ont. }\end{aligned}$ $\begin{array}{cl}103.5 & \text { CJSS.FM Cornwall. Ont } \\ 98.1 & \text { CKCL.FM Trumo. N.S. }\end{array}$ $\begin{array}{ll}98.1 & \text { CKCL-FM Truio. N.S. } \\ 1045 & \text { CKCY.FM Saull Sio. Maric }\end{array}$ 96.7 97.1 CKFM.FM Toronto. Ont 101.5 CKGB.FM Timmins. Ont 99.5 CKGM-FM Montreal, Que. 94.9 CKLB-FM Oshawa. Ont 95.9 CKLC.FA KIngston. Oif.

Me. C.L. Location Mc.
CKLG-FM Vancouver. B.C. CKLW-FM Windsor. Ont. 94.3 CKOK-FM Penticton. B.C. 94.3 CKOK.FM Penticion. B.C. 104.7 CKPR-FM Port Arthur, Ont. 91.1 CKQA-FM Winnineg, Man. 104.5 CKRD.FM Red Deer, Alta. 104.5
100.9
CKRO.FM SKA Sudbury, Ont. CкTB-FM St. Catharines,
04.3 CKUA.FM Edmonton. Alfa 99.9 CKVL.FM Verilun. Que. 94.5 CKWM.FM Kentville. N. 8 . CK.7 CKW-FM Kentvile. N.S.
CKWS.FM Kingston. Ont. 93.5. CKX-FM Brandon, Man. 99.5 CKX-FM Brandon, Man.

World-Wide Short-Wave Stations

The shortwave section of White's Radio Log is an exclusive feature of Radio-TV Experimenter magazine. This is a listing of the most active and most often reported stations, as compiled from reader reports sent in to us, from published schedules of the stations listed, and from actual monitoring at the official Radio-TV Experimenter monitoring station, DX Central.

We invite our readers to send in their loggings for inclusion in these listings. Be sure to include the following information for each station reported: approximate frequency, callsign and/or station name, and time monitored in Greenwich Mean Time (24 hour clock). Address your reports to: DX Central, White's Radio Log, Radio-TV Experimenter, 505 Park Avenue, New York, N.Y. 10022, U.S.A.

We are indebted to the following DX reporters for making this listing possible.

Patrick Martin, Seward, Alaska
John Shoemaker, Freeport, III.
P. L. Miles, Levitıown, N. Y.

Tom Kneitel, K2AES, Pt. Washington, N. Y.
W. L. Gunstream, Jr., Orange, Tex.

Allen McCann, Buffalo, N. Y.
Norman Zarr, Brooklyn, N. Y.
Errald Turner, Newport, Me.
Robert L. Ehman, Los Angeles, Calif.
Harold D. Allen, Arvida, Que.
Jerry Stuart, Lawton, Okla.
Danny Jamison, Orange, Va.
Julian M. Sienkiewicz, Brooklyn, N. Y.
Andrew Mandala, Washington, D. C.
Jack Copeland, Hackensack, N. J.
Ricky Vezzani, East Northport, N. Y.
Chuck Edwards, Ft. Lauderdale, Fla.
Melvin D. Herr, Jr., Fl. Sam Houston, Tex. Steve West, Staunton, Va.
Kenneth Cohen, Woodbridge, N. J.
W. Bates, Schenectady, N. Y.

LeRoy P. Ackerman, Phoenix, Ariz. George Zeller, Salem, Ohio
Richard Schultz, San Diego, Calif.
William Zlobik, Bridgeton, N. J.
Arthur Zimmerman, Moline, Ill.

Note! At the request of many of our readers, and to conform with radio club publications and international broadeasting schedules, we are going to be bringing you the Shortwave Section of WHITES RADIO L.OG with all times indicated in Greenwich Mean Time, 24 hour clock. "GMT" is the international time system and indicates the time at the Greenwich Observatory in England.

To aid you in converting GMT into your local time, we offer you the following chart, which you may find a handy guide around your DX shack.

GMT TIME TABLE

GMT	EST	CST	MST	PST
0000	1900	1800	1700	1600
0100	2000	1900	1800	1700
0200	2100	2000	1900	1800
0300	2200	2100	2000	1900
0400	2300	2200	2100	2000
0500	0000	2300	2200	2100
0600	0100	0000	2300	2200
0700	0200	0100	0000	2300
0800	0300	0200	0100	0000
0900	0400	0300	0200	0100
1000	0500	0400	0300	0200
1100	0600	0500	0400	0300
1200	0700	0600	0500	0400
1300	0800	0700	0600	0500
1400	0900	0800	0700	0600
1500	1000	0900	0800	0700
1600	1100	1000	0900	0800
1700	1200	1100	1000	0900
1800	1300	1200	1100	1000
1900	1400	1300	1200	1100
2000	1500	1400	1300	1200
2100	1600	1500	1400	1300
2200	1700	1600	1500	1400
2300	1800	1700	1600	1500

For conversion of GMT to U.S. Daytight (summer) time, add one hour to the desired local time. In other words, 0000 GMT is 1900 EST and would be 2000 EDST, 1900 CDST, etc.

The following abbreviations are used: BCBroadcasting Company, Corporation or System; E- Emissora; R-Radio; V. Voice or Voz.

Freq. (KC)	Call	Name	Location	GMT	Freq. (KC)		Call	Name	Location	GMT
2415	-	Windward Is. BC	St. Georges, Grenada	2230	3285	-		R. S. Africa	Capetown, Africa	2000
2450	4VEH	V. Evangelique	Cap Haitien, Haiti	1930	3315	-		R-TV Francaise	Ft. de Franc	0100
2510	HLK50	V. Free Korea	Seoul, Korea	1400					Martiniqu	100
3175	OLB5*	(time signals)	Prague, Czech.	1340					Guiana	0200
3250	-	R. S. Africa	Capetown, S. Africa	2030	3320	-		R. S. Africa	Capetown, 5 Africa	
3265	ZFY	R. Demerara	Georgetown, Br. Guiana	0200	$\begin{aligned} & 3332 \\ & 3356 \end{aligned}$	二		ORTF R. Bechuanaland	Brazzaville. Gaberones,	$\begin{aligned} & \text { - } 0500 \\ & -\quad 1200 \end{aligned}$

Freq. (KC)	Call	Name	Location	GMT
3370	-	R. Mil	Esmeraldas, Ecuador	0310
3390	-	R. Zaracay	Sto. Demingo, Ecuador	1000
3824	ZNF4V	-	Maseru. Basutoland	30
3883	-	R. Clb. de Cabo Verde	Praia, Cape Verde Is.	2100
$\begin{aligned} & 3913 \\ & 3995 \end{aligned}$	HLK5I VOO4	V. Free Korea Solomon I. BC	Seoul, Korea Honiara, Solomon	1400
			15.	07
		Budapest	Budapest. Hungary	Y 19
4494	-	R. Omdurman	Omdurman, Sudan	+ 1350
4600	-	R. Nepal	Kathmandu. Nepal	1358
4715	-	R. Mindelo	S. Vicente, Cape Verde Is.	1830
4745	HCEH3	R. El Progresso	Loia, Esuador	0410

60 Meter Band - 4750 to $5060 \mathrm{Kc} / \mathrm{s}$

$\begin{aligned} & 4761 \\ & 4795 \end{aligned}$	-	E. Mariana	Pasto Colombia	0230
	-	R. Comercio	Anogla	0530
		ORTF	Brazzaville, Congo	0500
	HCLV4	V. de los Caras	Bahia, Ecuador	0430
4810	-	R. S. Africa	Capetown, S. Africa	0430
	VMG	R. Popular	Maracaibo, Venezuela	0540
4840	-	BBC Relay	Francistown. Bechuanaland	1615
4870	-	R. Ceylon	Colombo, Ceylon	0945
4875	HSIJS	Army BC	Bangkok, Thailand	0730
4872	-	R.S.Cruz	Tegucigalpa. Guatemala	0030
4875	-	R. S. Africa	Capetown, S. Africa	0430
$\begin{aligned} & 48 B 5 \\ & 4890 \end{aligned}$	H	V. Kenya	Nairob, Kenya	1600
	HSVSS2	Army BC	Bangkok. Thailand	0730
	YVKB	R. Venezuela	Caracas, Venez.	0400
4895	-	R. S Africa	Capetown, S. Africa	1600
4940	-	Lins. R. Clube	Brazil	0300
4945	-	R. S. Africa	Capetown, S. Africa	1635
4950	-	R. Juticalpa	Juticalpa, Honduras	2345
4951	HJCO	R. Nacional	Bogots Colombia	0400
4960	VUD	All India R.	Delhi, India	1230
4994	CP	R. Omdurman	Omdurman, Sudan	1620
5015	CP48	R. Universario	La Paz, Bolivia	2300
5 C 30	-	Cadena Nacional	Bogota Colombia	0200
5C45	-	R. Altiplano	La Paz, Bolivia	2345
5047	Y	R. Lome	Lome, Togo	2015
5057	YVKD	R. Cultura	Corocas, Venez.	2213
5060	-	Burma BC	Rangoon, Burma	1430
5900	-	R. Budapest	Budapest. Hungary	1930
5920	-	R. Vilnus	Vilnus, USSR	2230
5930	-	R. Praque	Prague, Czech.	0100
5840	-	R. Vilnus	Vilnus, USSR	2230

49 Meter Band- 5950 to $6200 \mathrm{Kc} / \mathrm{s}$

$\begin{aligned} & 5950 \\ & 5958 \\ & 5970 \\ & 5970 \end{aligned}$	OAX6A HJKA	R. Ariquepa R. Interprovincial R. Berlin Int'I. R. Horizonte ORTF	Ariquepa, Peru Katonga Berlin, E. Germany Bogota, Colombia Brazzaville, Congo	$\begin{aligned} & 0400 \\ & 0400 \\ & 0100 \\ & 1900 \\ & 0500 \end{aligned}$
5980	-	Trans. de la Independ.	Tunio, Colomb	0300
5980	-	Greenland BC	Godthaob, Greenl.	2205
5985	-	R. Portugal	Lisbon, Port.	0215
5970	-	R. Habana	Hovano. Cuba	2200
	-	RAI	Rome, Italy	2020
	-	R. Bucharest	Bucharest, Rumania	0300
5975	-	R. Andorra	Andorra	2100
6030	YVNL	R. Miramda	Los Teques. Venezuela	1700
6003	-	E. do Liceu	Lisbon, Porługal	1700
6005	-	R. S. Africa	Capetown, S. Africa	0430
6010	-	R. Ivorienne	Abidian, Ivory Coast	1930
	-	RAI	Rome, Italy	0100
6025		R. Kiev	Kiev, USSR	0030
	PCJ	N. Nederland	Hilversum, Netherl.	2000
	CR6RZ	E. Official	Luanda, Angola	0600
6035	XZK3	Burmese BC	Rangoon, Burma	1500
6040	VUD	All India R.	Delhi, India	1230

$\begin{aligned} & \text { Freq. } \\ & \text { (KC) } \end{aligned}$	Call	Name
6045	XEX. QOC	R. Universidad
6050	-	RAI
6065	-	R. Sweden V de la Liberdad
6085	PCJ	R. Nederland
6095	-	R. S. Africa
6100	-	R. Phnom Penh
	HCSP4	V del Volante
	-	R. Belgrade
6110	-	R. Ghana

Freq.

Location
GMT

S. Luis Potosi,	
Mex,	0400
Rome, Italy	2020
Stockholm, Sweden (elandestine)	0930
Algeria	0015
Hilversum, Netherlands	2000
Capetown, S.	
Arica	

Alrica 0430
Phnom Penh, 1230
Cambodia
Portoviejo,
Ecuador 1215

Belgrade,
Yugoslavia
2130
Acera, Ghana 0330
$\begin{array}{ll}6110- & \begin{array}{l}\text { R. Ghana } \\ \text { R. Centro Populare } \\ 6117 \\ \\ \text { HJlQ } \\ \text { V. del Llano }\end{array}\end{array}$
$\begin{array}{ll}\text { Villarcencio, } & \\ \text { Colombia } & 0330\end{array}$

$6130-$	R. Nacional Espana Madrid, Spain	0100	
$6135-$	R. Habana	Mavana, Cuba	1100
$6150-$	R. Papeete	Papeete, Tahiti	0300
6	R.S.Africa	Capetown, S.	

Capetown, S. 1635
Africa
Africa
Bucharest, Rumania $\begin{array}{r}1635 \\ 0300\end{array}$
Berlin. E. Germany 0230
Bogota, Colombia 0400
Havana, Cuba 0100
(clandestine) 0015
Algeria
$\begin{array}{cr}\text { Alqeria } & 0015 \\ \text { Bogota, Colombia } 0400 \\ \text { Bucharest Rumania } 0300\end{array}$
Bucharest, Rumania 0300
Cali, Colombia 0400
$\begin{array}{ll}\text { Laos } & 1430 \\ \text { Peking, China } & 2030\end{array}$
Peking, Chind
(clandestine)
Greece 0037
Budapest. Hungary 2200
(clandestine)
1530 $\begin{array}{ll}\text { (clondestine) } \\ \text { Brazzaville, Congo } & 15300 \\ & 2030\end{array}$ Peking. China 2030
(clandestine)

Albania	1800
Progue, Czech.	0100
Kiev, USSR	0030
Mogadiscio.	

Mogadiscio.	0310
Somalia	2000

Tehran, Iran	2000
Damascus, Syria	1400

Angola 1030
Rhodesia 3600
$\begin{array}{ll}\text { Kiev, USSR } & 0430 \\ \text { Vilnus, USSR } & 2230\end{array}$
$\begin{array}{ll}\begin{array}{l}\text { Vilnus, USSR } \\ \text { Belgrade, } \\ \text { Yugoslavia }\end{array} & 2230 \\ & 2130\end{array}$
Geneva, Switz. 0600
Budapest, Hungary 2200
Taipei, Formosa 1000
Budapest, Hungary 2130
$\begin{array}{ll}\text { Budapest, Hungary } 2130 \\ \text { Rome, Italy } & 2020 \\ \text { Rhodesit }\end{array}$
$\begin{array}{ll}\text { Rhodesio } & 1300 \\ \text { Vilnus, USSR } & 2230\end{array}$
$\begin{array}{ll}\text { Tehran, Iran } & 2200 \\ \text { Delhi, India } & 1945\end{array}$
$\begin{array}{ll}\text { Delhi, India } & 1945 \\ \text { Tirano, Albania } & 3630\end{array}$
Capetown, S.
Africa
$\begin{array}{ll}\text { Rome, Italy } & 2020 \\ \text { Lagos, Nigeria } & 2200\end{array}$
Kiev USSR
Francistown
Bechuanaland 0400 Budapest, Hungary 1930
Kuala Lumpur,
Molaysia $\quad 1400$

Malaysia	1400
Prague, Czech.	0100
Vilnus, USSR	2230
(clandestine)	

(clons, USSR
Greece
$\begin{array}{ll}\text { Madrid, Spain } & 2020 \\ \text { Tirana, Albania } & 0630\end{array}$
9390 - R. Tirana
Tirana, Albania
0630
2030

31 Meter Band— 9500 to $9775 \mathrm{Kc} / \mathrm{s}$

$9505-$	R. Prague	Progue, Czech.	0700	
	-	R. Belgrade	Belgrade, Czech.	2130
	CR6RB	R. Benguela	Benguela, Angola	0830
9508	- Omdurman	Omdurman, Sudan	0530	
$9510-$	R. Bucharest	Bucharest, Rumania	0300	

Freq. $(K C)$	Call	Name	Location	GMT
9525	- R.	R. S. Airica	Capetown, S. Africa	525
		R. Hab	Havana Cuba	700
9540	- R	R. Ulan Bator	Ulan Bator, Mongolia	O
		R. Interprovincial	Katanga	2115
9543	- R	R. America	Lima, Peru	0515
9545		R. Ghana	Acera, Ghana	1900
9550		R. Habana	Havana, Cuba	1700
9570	CE957	R. Portales	Santiago, Chile	0000
9575	- R	RAI	Rome, Italy	1200
		R. Berlin Int'I.	Berlin, E. Germany	0615
9590	-	R. Bucharest	Bucharest, Rumania	0300
5		Syrian BC	Damascus, Syria	2330
9615	-	R. Nacional Espana	Madrid Spain	0100
9620		R. Sweden	Stackholm, Sweden	1400
9625	- R	R. Sweden	Stockholm, Sweden	0900
9630		RAI	Rome, Italy	0100
9640		R. Ki	Kiev, USSR	0030
	HLK5	V. Free Korea	Seoul, Korea	2100
9650	- R	R. S. Africa	Copetown, S.	
9855		R.	Africa Havana,	$\begin{aligned} & 0500 \\ & 1100 \end{aligned}$
	DMQ9	Deutsche Welle	Cologne	
9675	- R	R. D	Dakar. Seneg	1730
9680	- R	R. Kiev	Kiev, USSR	0030
9685		V. de la Liberdad	(clandestine)	
	BED73	V. of Free China	Taipei, Formo	$\begin{aligned} & 0015 \\ & 1015 \end{aligned}$
9889	LRA32	RAE	Buenos Aires,	
90		V of Nige	Lagos, Nigeria	2200
9705	ETLF	R. V. of Gospel	Addis Ababa, Ethiopia	
9710	- Ral	RAI	Rome, Italy	2020
		R. Beirut	Beirut Lebanon	
9715	KGEI	V. oif Friendship	San Francisco,	0200
9720	- R.	R. Saudi Arabia	Riydah, Saudi	
			Arabia	1645
9750		R. Beirut	Beirut Lebanon	2300
9753	OAX8Q	R. Sideral	Pucallpa. Peru	0200
9760		R. Ghama	Accra, Ghana	2000
		R. Nacional Espana	Madrid, Spain	0220
9768	OAX80	R. Amazones	Iquitos, Peru	0330
9730		ORTF	Brazzaville, Congo	0500
97.57	BED74	V. of Free China	Taipei, Formosa	1530
9770		Austrian R.	Vienna, Austria	2300
9795	-	R. Prague	Prague, Czech.	0100
9840	- R.	R. Hanoi	Hanoi, N. Vietnam	1000
9865	- R	R. Diakarta	Diakar	
			Indonesia	1900
		R. Tirana	Tirana, Alban	0030
9915	VUD	All India R.	Delh. India	1945
11640	VUD	All India R.	Delhi, India	1945

Freq.			
(KC)	Colf	Name	Location

19 Meter Band- 15100 to $15450 \mathrm{Kc} / \mathrm{s}$

25 Meter Band-II700 to $11975 \mathrm{Kc} / \mathrm{s}$				
$\begin{aligned} & 11705 \\ & 11710 \end{aligned}$	-	R. Sweden	Stockholm. Sweden	00
		ORTF	Brazzaville, Congo	
	LRA35	RAE	Buenos Aires. Araentina	2215
11715	YDF2	R. Diakarta	Diakarto,	
$\begin{aligned} & 11725 \\ & 17755 \end{aligned}$		ORTF	Brazzaville. Congo	1730 0500
	EtLF	R. V. of Gospel	Addis Ababa,	
11770			Quito Ect	100
	ZYB8	R. de Soo Paulo	Sao Paulo,	0820
		R. Beirut	Beirut Lebanon	183
$\begin{aligned} & 11775 \\ & 11785 \end{aligned}$		R. Kabul	Kabul, Afghanistan	1400
	ETLF	R. V. of Gospel	Addis Ababa, Ethiopia	0300
	DMQ II	Dcutsche Welie	Cologne W.	10
$\begin{aligned} & 11790 \\ & 11795 \\ & 11800 \\ & 1810 \\ & 11820 \end{aligned}$	-	R. Yereva	Yerevan. USSR	0850
	-	R. Berlin Int	Berlin, E. Germany	0345
		R. Ghana	Accra, Ghana	1900
		R. Bucharest	Bucharest, Rumania	0300
	XEBR	Heraldo de Sonora	Sonora, Mexico	2145
		R. Berlin Int'l.	Berlio, E. Germany	1915
		Papecte	Papeete Tahiti	0300
$\begin{aligned} & 11825 \\ & 11835 \end{aligned}$		R. Berlin Int'\|	Berlin, E. Germany	1215
	CXAIS	R. el Espoctator	on	
11840			Uruguay	1830
		R. Hanoi	Bondire Neth. Ant. Hanoi, N. Viełnam	1000
11850	DZH8	Far East BC	Manila Phil.	0900
		R. Ulan Bator	Ulan Bator,	

Destruction from Space

Continued from page 45
photographs the earth from 300 miles up, electronically marking its position by measuring the stars above. It photographs so fast, travelling at 17,000 miles an hour, that one commentator said Samos photographs much as one would take pictures of "a horse race from a moving elevator."

Bambi. Bambi, still under study, is an electronic satellite designed to one day spot and intercept fired missiles two to 500 miles in space. The boost phase of a missile may last only three minutes, and in those 180 seconds Bambi is to cite the firing by infrared, intercept by heat-seeking warhead.

Although Bambi, admittedly, is still in study stage. there is promise we will one day see this amazing satellite. But its fellow scout planned to help meet our serious problem in space, has been cut back. Satellite Inspector, first named Saint, to be designed and built hy RCA was cut back "two years ago." If the Inspector had survived, it would have been designed to scout intruders in space, scan a space object to be sure it was enemy, not friend, then destroy it by strewing sand or chemical in the satellite's path if it was a hostile fellow.

More Cut Back. Another Air-Force victim of cancelled contracts was the space glider Dyna-Soar, programmed in 1958 to be operational by 1965 or 1966 , it was cut back in 1963, when the Department of Defense replaced it with a thirty million dollar "study" of the manned orbital laboratory.

But not until a few months ago, when President Lyndon Johnson invited newsmen to the White House did we see real action meant to meet this tragic gap in our space program. Then, on August 25, 1965, the President invited newsmen to the White House, made this important announcement. We would build, he said, at the cost of $\$ 1.5$ billion dollars, a manned orbital (MOL) laboratory. Directed by the Air Force, the project would be handled by two major companies. Douglas Aircraft would design and build the laboratory. General Electric would plan and develop space experiments. And the purpose of the craft, the President said, would be to "learn more about what man is capable of doing in space, and how that ability can be used for military purposes."

Unmanned flights would be scheduled to
test launching beginning late 1966, or early 1967. The initial unmanned launch of a fully-equipped MOL would be scheduled for year 1968. This would be followed later that year by the first of five flights with twoman crews. MOL's future astronauts would be military test pilots, science or engineering graduates of the Acrospace Research Pilot School at Edwards Air Force Base in California.

No Talk. After that heralded press conference, the Government lost its voice. So did the Air Force, Defense, Douglas Aircraft. But to break through the wall of hushhush and fill in Radio-TV Experimenter readers. we sought out these facts about the future laboratory.

The entire vehicle, according to John M. Coulter, a Colonel writing a paper for the Air University Review, will consist of a Gemini B capsule, carrying a crew of two, with a house-trailer size lab, that will launch into space on a Titan IIIC booster. Once in orbit the crew will transfer from their Gemini capsule into the laboratory section. There, in "shirt-sleeve" pressurized environment, they will stay in space thirty days carrying out "scientific and military" experiments.

When the mission is completed, or if there is an emergency, the crew will return to the capsule, separate from the laboratory, reenter earth's atmosphere to be recovered at sea like any other Gemini. The laboratory could then be left abandoned in orbit, or programmed for command re-entry and destruction. It is possible, too that the future lab may be designed to rendezvous and dock, and if it is, it could be used to supply ferry vehicles for outer-space craft.

MOL Military. But MOL's first thoughts must be military. As Secretary of Defense Robert S. McNamara has put it, MOL's mission will be to "develop technology to improve capabilities for manned or unmanned operations of military significance."

All of which is fine. We will have a craft capable of military effort by the year 1968. But when we realize orbital bombers roll across Red Square, not bashful at all threatening destruction of the free world with their "colossal power" we wonder what will hold back these H -bombers until 68 . A United Nations agreement? Fear of what the people in Tanganyika may think of the Russians if they start war? Shall we hurl peaceful intention at H and megaton bombs? Or hope to
(Concluded on page 1/8)

DC Transformer

Contimued from page 80
the primary and secondary films-each only approximately 1000 angstroms thick (one angstrom equals one hundred-millionth of a centimeter)-are separated by an even thinner film of silicon oxide, an insulating material, only about 100 angstroms thick. By placing a number of secondary films in series in the DC transformer, it is possible to develop a secondary voltage many times higher than the primary voltage. Similarly, by placing a number of primary films in series, the output voltage can bc "stepped down" below the input voltage.

The DC transformer marks Dr. Giaever's second major contribution to superconductor research. In 1960, he announced the discovery that electron "tunneling," originally observed only in carefully prepared semiconductor materials, also could occur in thin film superconducting devices of far simpler configuration. Subsequent tunneling studies have added greatly to fundamental scientific knowledge of both tunneling and superconductivity.

Advertiser ADVERTISING INDEX Page	
Allied Radio Coru.	14
Ameritan Institute of Engineering \& Tecio	. 17
Burstein Applebee Co.	15
Christy Trades School	15, 16
Cleveland Institute of Electronics	94, 95
Edmund Scientific Co.	
EICO	Cover
Fair Radio Sales	16
Heath Company	60, 61
Hughie Enterprises	17
International Correswondence Sthools	1
Lafayette Radio Electronics Corp,	13
Mercury Electronics	+ 4
Meshna, Join Jr.	21
Midway Antenna	21
Midway Mike	17
Multicore Sales Corvoration	12
National Radio Instifute	Cover
National Radio Instifute	Cover
Olson Electronics	- 12
Progressive Edu-Kits, Lac.	- 9
RCA Institutes, Inc.	26, 27
Radio Shack	2, 3
Scoti, H. H., lnc.	6
Squires Sanders	13
Trans-Tek	- 14
Telex Corn.	8
Universal Tuhe Co.	21.

Join a Radio Club

Consimued from puge 62
which are available to members for DXing prowess. The ASWLC produces the weekly DX broadcast over SW station WRUL.

American Central Radio Club, \% Richard Wood, 207 East 16th Street, Bloomington, Ind. 47403. Founded in 1963, the ACRC gets $\$ 2$ a year from members. They furnish a nice 10 -page paper each month which seems to concentrate on listings of Latin American stations, especially those on the shortwave bands.

International League of Signal Chasers, \% Mark Starin, 19 Dorlen Circle, Wethersfield, Conn. 06109. A new club, organized last year, they have a paper called The Longwire. Dues are 75 ל.

DX Internationale, \% David Wilson, 91 Court St., Newton, Mass. 02160. This cluh is really on the way up, and they haven't slowed since their founding in 1963. They publish a giant (sometimes 50 page) monthly bulletin which frequently features color. Coverage includes every possible phase of DX'ing, tape swapping, etc.

International Radio Club of America, \% Bill Nittler, P.O. Box 5181, Denver, Cole. 80217. Started in 1964 by a group of former members of NRC, IRCA devotes efforts towards BCB DX'ing. Dues are $\$ 4$.

National Radio Club, \% Ray Edge, Box 63, Kennsington Station, Butfialo, N. Y. 14215. Started about 33 years ago, this is the top club in the country for BCB DX enthusiasts. The yearly conventions are a blast. Dues are $\$ 4$.

Newark News Radio Club, 215 Market Street, Newark, N. J. 07001. If you never do anything else in DX'ing you shoukj join the NNRC, the oldest and largest of all of the clubs. They publish a massive monthly DX bulletin which takes up all aspects of DXing-really helpful. $\$ 5$ dues.

North American Shortwave Association, \% Bill Eddings, 1503 Fifth Avenue, Altoona, Pa. 16602 . Going strong and growing since 1961, the NASA has racked up several hundred members and a good reputation for putting out a healthy DX bulletin with werthwhile items. Dues are $\$ 3$.

These aren't all of the clubs, but these are the ones which have proven themselves as being "here to stay." Why not see what they have to offer you?

FOR BIGGER PROFITS!
 NEW CAREER OPPORTUNITIES! read and reply to these classified ads

ADDITIONAL INCOME

MAKE Your Classifled Ad Pay. Ge Pulls." Includes certificate woith That Pulls. Includes certificate worth $\$ 2.00$
towards classified ad in S \& \quad Send cowards classified ad in S \& M. Send tics, 505 Park Ave.. New York. N. Y. 10022.

BOATS MOTORS \& MARINE SUPPLIES

FULL size, cut-to-shape boat patterns. blueprints. Send $50 ¢$ for blg New lllustrated "Build a Boat" catalog includes Fishing Boats, Garvles, Cruisers, Catamarans. Houseboats-Outboards, Inboards, Sallboats- $73 / 2$ to 38^{\prime}. "How to Build a Boat" booklet $\$ 2.50$. Cleveland Boat Blueprint Co, Box 18250, Cleveland, Ohlo.

BOAT KIts. Factory molded fiberglas or pre-assembled plywood. 40^{\prime}. Runabouts, Cruisers. Houseboats. Free calalog, Luger, Dept. UC-66, 9200 Bloomington Freeway, Bloomington. Minnesota.

BOAT COMPASS: Liquid, Compensatable, Illuminated, Guaranteed, $\$ 7.50$ Prepaid. Brochure on Request. Burbet 1 mm -

BOOKS \& PERIODICALS

FREE! The U.S. Coast Guard Boating Guide-(sall and power). Cigar Smokers: Get this $\$ 1.00$ book freel Clip this ad, send with 25 cigar bands from one shape of any one brand to P.O. Box 16579 , zlp code. Expires Sept. 15. 1966.

BUSINESS OPPORTUNITIES

I MADE $\$ 40.000 .00$ a Year by Mallorder. Helped others to make money! Start with $\$ 10.00$-Free Proof. Torrey, Box 63566T, Oklahoma City, Okla. 73106.
FREE Book " 990 Successful LittleKnown Businesses." Fascinating! work homel Plymouth-911-Y, Brooklyn. N. Y. 11218.

DOCKS \& WATER FRONT CONSTRUCTION

[^3]
EARTHWORMS

BIG Money Raising Fishworms and Crickets. Free Literature. Carter Farm-O, Crickets. Free Literatu
Plains, Georgia. 31780

FIREARMS, AMMUNITION \& EQUIPMENT

[^4]
FLORIDA LAND

FLORIDA Water Wonderland-Home cottage, Mobilesites. Established area, $\$ 590.00$ full price, $\$ 9.00$ a month. Swim: ming. fishing, boating. Write: Lake Weir, Bos. Mi38, Sllver Springs, Florlda AD 646127 ($\mathrm{F}-1$).

FOR INVENTORS

PATENT Searches-48 hour airmail service, $\$ 6.00$, including nearest patent coples. More than 200 registered patent attorneys have used my service. Free invention protection Forms. Write Miss Ana Hastings, Patent Searcher, P, O. Box 176, Washington 4, D. C.

FOR SALE-MISCELLANEOUS

BARGAINS Our Business. Catalog 10 c Refundable. Tojocar, 2907-B West 39th Place. Chicago, Ill. 60632.

CATALOG of all Science \& Mechanics Craftprints. Send $25 c$ to cover postage and handling to Craftprint Dtv., Science \& Mechanics, 505 Park Ave., New York, New York 10022.

HYPNOTISM

NEW concept teaches you self-hypnosls quickly! Free literature. Smith-McKinley, Box 3038, San Bernardino, Calif.

HYPNOTIZE secretly, cleverly, one glance . or money-back, $\$ 2.00$. Elton's Box 18223-TV2. Indianapolis, Indiana, 46218.

INVENTIONS WANTED

WE elther sell your invention or pay cash bonus. Write for detalls. Unlversal Inventions, 298-5, Marion, Ohio.

MONEYMAKING OPPORTUNITIES

PROVEN! Euslest Money Ever!! Plan \$1.00. Action, Box 3114, Corpus Christi, Texas

TRAIN at home for High-Paying Jobsi Send for the complete guide with its important Directory of Courses and discover what courses are best for your talents. Send $\$ 1.00$ for "'How To Succeed Through Home Study." 505 Park Ave., New York. New York 10022.

PATENT SERVICE

PATENT Searches, $\$ 6.00$: For free "'invention Record" and "Important Information Inventors Need, Write: Miss
Hayward, 1029 D vermont, Washington 5 , District of Columbla.

PATENT Searches-48 hour alrmall service, $\$ 6.00$. including nearest patent coples, More than 200 registered patent attorneys have used my service. Free Invention Protection Forms write: Miss Ann Hastings, Patent Searcher, P. O. Box 176, Washington 4. D. C.

PERSONAL

REVOLUTIONARY Weekly Stock MarREVOLUTIONARY Weekly Stock Mar:
ket exposure poll signifies advance market ket exposure polt signines advance market Brooksville, Florida 33512.

PETS-DOGS, BIRDS, RABBITS, HAMSTERS, ETC.

 MAKE blg money raising rabbits for us.Information 25¢. Keeney Brothers, New Freedom, Penna

PROFITABLE OCCUPATIONS

INVESTIGATE Acc!dents. Earn $\$ 750.00$ to $\$ 1,500.00$ monthly. Car furnished. Expenses paid. No selling. No college educathon necessary. Plek own job location in U. S., Canada or overseas. Investigate full time. Or eara $\$ 8.44$ hour spare time. Men urgently needed now. Write for Free information. Absolutely no obligation. Unlversal, CMH, 6801 Hillcrest, Dallas 5 Texas.

START Proftable Business in spare time. Investigate many moneymaking agency and franchise opportunities. Send 106 for sample copy of Income Opportunitles Magazine, 505 Park Ave., New York 10022. Dept. S.

RADIO \& TELEVISION

McaEE Radio Company. Big 1966 Cata${ }^{\mathrm{log}}$ Sent Free. America's Best Values Hi-F, Amplaers, Speakers, Electront Parts. Send Name, Address and Zlp Code Number to McGee Radio Company, 190 McGee Street. Dept. RTV. Kansas City Missouri 64108.

FREE Catalog. Electronics parts, tubes Wholesale. Thousands of Items, Unbeat able prices. Arcturus Electronics-RT 502 22nd St., Union City, N. J. 07087.

CONVERT any television to sensitive. big-screen oscilloscope. Only minor chang es required. No electronle experience nec essary, Illustrated plans, $\$ 2.00$. Relco-A30 Box 10563. Houston. Texas 77018.

TELEVISION troubles spotted in minutes! Repalr all makes and models this easy expert way. No Book theory. A real ",work bench" simplified method. Used by "pros" throughout the industry. Write specifying black/white, or color. Nationa Technical Research Labs, 6430 So. Western Ave., Whittier, Callf.

NEW! HI-FI Enthuslasts-A Special Magazine for you. Read the unblased tests on new equipment. Send $\$ 1.50$ to HI-FI Buyers' Guide, 505 Park Ave. New York, N. Y. 10022.

SONGWRITERS

POEMS Wanted for musical setting and recording, Send poems. Free examination Crown Mustc, 49 -SC West 32 , New York 1

SPECIAL SERVICES

LOOK Men-especially Golf Players. Cut your shoe cost. Send 25 for detalls. Delph's Leather Products, Tamaqua, Pennsylvania 18252.

TREASURE FINDERS-PROSPECTING

EQUIPMENT
"NEW" Sclentinc Instrument detects
buried gold, sllver, colns, treasures, $\$ 19.95$
up. Free catalog; Relco-A.30, Box 10563 .
Houston, Texas 77018.
June-July, 1966

Language DX

Còntínued from page 88

best organization to start with for several reasons. The Voice has transmitting plants in North Carolina, Ohio, and California, and this relative closeness. plus the high power in use by the Voice, affords the SWL an excellent opportunity of picking up all of the languages transmitted by the Voice of America.

In addition, schedules are relatively simple to obtain. They can be had by writing: Mr. George Jacobs, Frequency Division, Voice of America, Washington 25, D. C. The Frequency Division is also responsible for answering requests for QSL's.

Pick a Lingo. Still another variation of the language DX hobby gives promise of many rewarding hours. Choose a single language and check as many broadcasters as you can transmitting in that language.

English, for example, would be a good beginning, and a sample check sheet for the interested DX'er is shown in Table B.

There are advantages to starting with English, since it is understood by all readers of this magazine. In addition, it is the most popular language of international broadcasters. appearing in the schedules of some 94 different broadcast organizations, including a number of clandestine stations, such as The Voice of Cyprus, the Voice of the Falcon, and The Voice of Freedom Fighers of North Borneo.

Other candidates for DX ing a particular language are French, carried by 68 different broadcasters, Spanish, carried by 48 broadcasters. Running a surprising fourth is Arabic, carried in the International Service of 47 different broadcasters.

At the other end of the spectrum, there are a number of languages that are carried by only one broadcaster. Among these there is Adigey carried by Radio Liberty, Efik by Spanish Guinea, Fanti by ELWA Monrovia. Latin by The Vatican, Niue by Radio New Zealand, Turki by Radio Pakistan, and Wolof, by Tangier

In conclusion, it would seem that with a veritable windfall of new and exotic languages now being transmitted by the world's broadcasters, the hobbyist has an unprecedented opportunity to begin a very interesting and stimulating variation of a very popular but somewhat limited hobby.

Destruction from Space

Continued from page 11.5
base our survival on weapons Ralph Lapp calls "vulnerable?"

Three Missions. Or should we heed our military men? They warn the orbital missile may be missioned three ways:

It could blackmail the free world by orbiting in space, frightening the people with a Damocles of H-bombs over their heads, while gloating Russian leaders demanded surrender.

The missile might possibly be put into orbit undetected, to aim its H -bombs at United States cities in mammoth surprise attack.

Or, most frightening of all, the missile could orbit 150 miles in space, carrying a bomb yield of 100 to 150 megaton warhead, then detonate this yield in space. Military experts tell us no concussion would be felt on earth. There would be no immediate radiation coming through the earth's atmosphere. But the bomb's effects could be a "wide blast of searing heat," that could set a whole continent on fire.

Peace. Which leaves us one question! Will we pay with massive national destruction as direct result of the "peaceful purposes," the Dale Carnegie, love-everybody attitudes of our passive leaders?

Already it is possible an H -bomb orbits over our heads in the skies.

Tape that Saved the Voice

Continued from page 48
in the Congressional Library in Washington and in the Will Rogers Memorial at Claremore, Oklahoma. Today visitors at the Memorial at Claremore can hear anything from a two-minute sample of his commentaries. to hours of them. In addition, his voice is heard on radio and on television, and can be had in new record albums.

The true simplicity, humility and greatness of this man whose voice was all but lost forever can now be preserved. Thanks to the magic of magnetic recording tape you may hear his restored voice saying in that Oklahoma drawl, "You never saw a picture of a Pilgrim praying when he didn't have a gun beside him. That was to see that he got what he was praying for."

BUILD, EXPERIMENT, EXPLORE, DISCOVER WITH NRI CUSTOM-DESIGNED TRAINING KITS

BUILD YOUR OWN PHONE/CODE TRANSMITTER

This is just one of seren training kits programmed into P RI's Complete Communications course. You get actual practice in beilding your own crystal-controlled, chone/code transmitter and putting it on the gir. You experiment with modulation, "clamping" circuits, key filters, other aspects of commercial transmitter operation. Can be put on the air simply by attaching an antenna and complies with FCC regulations. As with all MRI training kits, you get the most modern features and parts.

BUILD ACTUAL ANALOG COMPUTER CIRCUITS

Incustry, business offices, the government and military all need trained Electronics Technicians. NRI's Industrial Electronics course prepares you. You progress through 10 zarefully designed training kits, topping off your practical experien=e phase of training by experimenting with feedback control systerns, analog computers and digital computer elements. You actually solve problems on this analog compuzer you build yourself. This is the prectical, fast way to a good paying career position.

BUILD A CUSTOM-ENGINEEFEC TELEVISION RECEIVER
Want to earn $\$ 3$ to $\$ 5$ an hou is spare time? Wart your oun farttime or full-time business? In Ra dio-TV Servicing you learn to install, maintain, service racios, TV sets, hi-fi and stereo, other hom Electronics equipment. in you* training are eight training kits including -his complete, modern slim-line TV receiver. You buid yourself, become familiar witt components and circuits, lear: servicing proced \lrcorner res . . . and ear extra money as you train. Natione Radio Institute, Washington, DC.

FIRST CLASS
PERMIT
NC. 20-R
Washington, [C.C.

Join the Thousands Who Gained Success with NRI

"Many thanks to NRI. I hod FCC License, an master control erginger coitro
with KXIB--
Wincer WOOD, Farge, N.D.

"Il am a Sonior En. giseering Aide. Without NRI I would still be work. Ine in a fastory at a lower stasdard of livng." D F. CON. RAD, Reseda, Calif.

BUSINESS REPLY MAIL

mo postage stamp necessary if mailed in the united itates

postage will be paid by

NATIONAL RADIO INSTITUTE

3939 Wisconsin Avenue

Washington, D.C. 20016

YOU GET MORE FOR YOUR MONEY FROM NRI
 Below is an example of mattrial included in just one NRI course. Other NRI home stucy plans are equally complete.

AMERICA'S OLDEST AND LARGEST RADIO-TV, ELECTRONICS HOME-STUDY SCHOOL

Compare if you like. You'll find-as have so many thousands of others-that NRI training can't be beat. From the delivery of your first lessons in the remarkable, new Achievement Kit sent the day we receive your enrollment, to "bite-size," easily read texts and carefully designed training equipment . . . NRI gives you more value. The picture above dramatically illustrates the material included in just one NRI course. Everything you see is included in low-cost NRI training. But NRI is more than kits and texts. It's also friendly, per-
sonal services which have made NRI a 50 year leader in the home study field.

Whatever your interest or need. . - whatever your education ... there is an NRI instruction plan in Radio-TV Servicing, Electronics or Communicaticns to fit your needs; turition retes to fit your budget. Prove to yourself-your best home-study bly is NRI. Mail pcstage-free ca-d today. No saiesman wia call. NATIONAL RADIO INSTITUTE, Electronics Division, Washington, C.C. 20016.

SSEE other Side

 National Radio Institute, Electronics Division Washington, D.C. 200165.066

Please send me your catalog. I have checked the field(s) of most interest to me. (No salesman will call) PLEASE PRINT.
\square Television-Radio Servicing
\square Complete Communications
\square Industrial-Military Electronics
I] FCC License
■ Basic Electronics

Math for Electronics
 \square

Electronics for Automation
Aviation Communications
\square Marine Communications
\square Mobile Communications

> ㅁ
\qquad Age Zip Code

[^0]: President and Publisher
 B. G. DAYIS

 Ercentive Vice President and dssistant Publisher JOEL DAVIS

 Vice President and Editorlal Director HERB LEAVY, KMD4529

[^1]: RADIO-TV EXPERIMENTER

[^2]: PARTS LIST
 C1—75-mf 15 -volt electrolytic capacitor
 Fl-Fuse, $1 / 2$-amp, instrument type
 11 —Pilof lamp, Type 47
 K1-6-volt, 335 -ohm coil (Potter \& Brumfield RS5DI
 Q1, Q2—2N3053 or equivalent npn transistor
 R1—330-ohm, 1-waff resistor (See Fig. 2 for alfernate value)
 R2— 5600 -ohm, $1 / 2$-walt resistor
 R3-3300-ohm, $1 / 2$-watt resistor
 R4—39-ohm, $1 / 2$-watt resistor (See fig. 3 for alternate value)
 1-Buzzer, high-frequency Code-Practice (Lafayefte 99R2556)
 1-aluminum chassis box (Bud CU2101 or equiv.l
 Misc.-perforated phenolic board, eyelets, wire, pilot lamp assembly, lugs, aluminum for bracket, etc.
 Estimated construction cost: $\$ 7.00$
 Estimated construction time: $11 / 2$ hours

[^3]: DOCKS-Assembled, nine f t. sections. You can launch these yourself Need no piling or winter removal. Water Front piling or winter removal. Water Front ton, N. J. 07860.

[^4]: SILENCERS: Rifles, Pistols, Detalls Construction Operation $\$ 1.00$. Gunsco, Soquel, Calif. 95073.

 THE New "Hunting Gulde" draws a bead on Regional Hunting ., Forecasts. "Testing The Buck Sluggers." "Getting In Shape For The Hunt." etc. Send for your copy; Hunting Gulde (\#755). 505

